
ISO TC184/SC4/ WG3 N 701 (P)

Date: November 21, 1997 Supersedes SC4/ WG3 N 498

PRODUCT DATA REPRESENTATION AND EXCHANGE

Owner/Editor: Tim Turner Alternate: Peter Lazo
Address: Address:

LR Newport News Shipbuilding
100 Leadenhall Street Newport News
London, EC3A 3BP
ENGLAND USA

Telephone/FAX: +44 171 423 2047 / 2063 Telephone/FAX: +1804 688-8314 / -1073

E-mail:tcstjt@aie.lreg.co.uk or Tim.Turner@lr.org E-mail: plazo@mcimail.com
Comments to Reader
The document includes the changes agreed at the STEP meeting in Chester (March 1997), and in
San Diego (June 1997), such as guidance on empty select types, redeclarations, constraints,
assumptions on “oneof” subtypes, BB referencing, use of STRING, user-defined options, graph
principles and external_referencing. It was released during the Florence STEP meeting
(19/10/97) for review by the Ship Team, although some parts are still under development & this
is clearly indicated, whilst there is also some consistency to be addressed (e.g. between different
diagrams).

Part: Title: AP Development Guidelines for Shipbuilding

Purpose of this document as it relates to the target document is:
 Primary Content Current Status: Working Draft
 Issue Discussion
 Alternate Proposal
 Partial Content

ABSTRACT:
This document is to provide guidelines for the development of Application Reference Models
for shipbuilding in order to assure consistency and integration among the various shipbuilding
related Application Protocols.

KEYWORDS: Document Status/Dates (21/11/97)

application protocol Part Documents Other SC4 Documents
shipbuilding ______ Released 21/11/97 Released
guidelines ______ Project _______ Working
product model development
ship common model ______ Working _______ Editorial OK
common application activity ______ Technically Complete _______ Technically
- model ______ Editorially Complete _______ Complete

______ ISO Committee Draft _______ Approved

ii

EXECUTIVE SUMMARY

This document provides the community of people developing Application Reference Models
for shipbuilding with a set of guidelines in order to assure consistency and integration among
overlapping Application Reference Models, and provides a detailed description of the struc-
ture of the overall Ship Product Model, it’s architecture, design and use. In addition the
guidelines aim for a more efficient development of Application Reference Models and related
documentation through the concept of reuse and automatic generation of documentation.

The document defines among other things

• general modelling concepts and rules, especially the Building Block approach

• proposals for solving interoperability issues

• the formal definition and the requirements for commenting of Building Blocks

• the Ship Common Model architecture, it’s framework, domain models and utilities

• a list of quality criteria to be fulfilled by product model contributions.

• the shipbuilding Common Application Activity Model

These guidelines introduce concepts, which do not exist in the context of the development of
Application Protocols in accordance with the ISO/STEP development guidelines. However,
great care has been taken such that the result of the application of the guidelines here can be
easily transformed to yield a representation of an Application Reference Model as required by
the ISO/STEP guidelines.

These guidelines do not intend to supersede the ISO/STEP Application Protocol development
guidelines in any way. It shall be viewed as a supportive means for the concurrent develop-
ment of two or more overlapping Application Reference Models.

This document is intended to be a living document amended through practical experience.
Feedback should be provided to the document editors.

This document now represents the harmonisation of several previously separate, but related
pieces of work, such as the previous release of ISO TC184/SC4/WG3/N498-AP Development
Guidelines for Shipbuilding, dated 17/07/96 [Guidelines-96], ISO TC 184/SC4/WG3 N511 -
Shipbuilding Common Activity Model, dated 14 January 1996 [Common AAM] and the Ship
Common Model, Version dated 30 July, 1997 [SCM-97].

iii

DOCUMENT HISTORY

Version dated September 8, 1995: Based on the MARITIME Cookbook, Version 2.0; numer-
ous changes; editor: Roland Oehlmann, BIBA..

Version dated January 21, 1996: Naming convention for stubs documented; EXPRESS re-
strictions revised (complex entities); term Ship Common
Model introduced and BBs assigned.

Version dated April 18, 1996: Graphs Building Block included; BB list for Ship Common
Model updated; text on Building Block names added; refer-
ence to the AP Cross Reference List added; requirements for
the BB header changed to not include UoD Classification,
Activity Model Reference, and Exported Entities and Types,
but Open Issues and a Rationale.

Version dated July 17, 1996: Rule on import of abstract supertypes from BBs included
(clause 3.11); discussion on interoperability added (clause
3.10); commenting of enumerations (clause 3.6.1/2); update
of BBs in the Ship Common Model (clause 4.1).

Version dated October 19, 1997: Updated rule on how to reference STEP resources
(clause4.6); added rule on use of enumerations (clause
4.5.2), use of complex_entities (clause 4.5.3), and use of
STRING (clause 4.5.4); updated rules on select types
(clause 4.5.5), redeclared attributes (clause 4.5.6), instance
level references (clause 4.9), added guidance on when ex-
ternal references should be used (clause 4.9.1); added sec-
tion on design of external references (clause 4.9-4.9.1 &
Appendix B), plus example usage of external references
(Appendix B); Added section on compilation of building
blocks (clause 4.11); and Added the principles behind the
graphs building block (clause 5.6.10). Merged Guidelines
with the Ship Common Model. Introduced EXPRESS-G for
most Building Blocks within the SCM. Added Common
Application Activity Model, chapters on Ship General
Characteristics and Location concepts, removal of Classifi-
cation Survey & Moulded Forms, added Ship_point, curve,
surface etc. Introduction to the Building Block approach
added.

Version dated November 21, 1997: Modified front cover to include new “N” number & de-
scription in the footer.

iv

 CONTENTS

1. INTRODUCTION TO THE ISO 10303 SHIP APPLICATION PROTOCOLS .. 6

2. SCOPE .. 7

2.1 ABBREVIATIONS ... 7

3. INTRODUCTION TO THE BUILDING BLOCK APPROACH .. 8

3.1 DEFINING BUILDING BLOCKS.. 8
3.1.1 Building Block Syntax – Example: ... 9

4. MODELLING GUIDELINES .. 10

4.1 BUILDING BLOCK NAME... 10
4.2 SIZE OF BUILDING BLOCKS ... 10
4.3 EXISTING BUILDING BLOCKS .. 10
4.4 COMMENTING BUILDING BLOCKS... 10

4.4.1 Where to place comments... 11
4.4.2 How to format comments ... 11
4.4.3 Keywords in comments... 12
4.4.4 Example.. 12
4.4.5 Identifiers ... 13
4.4.6 Contents of Comments.. 14

4.5 RESTRICTIONS ON USAGE OF EXPRESS... 16
4.5.1 Use of OPTIONAL Attributes... 16
4.5.2 Use of Enumerations .. 16
4.5.3 Use of ANDOR ... 17
4.5.4 Use of STRING... 17
4.5.5 Use of SELECT Types .. 17
4.5.6 Use of Redeclarations .. 19

4.6 HOW TO REFERENCE STEP RESOURCES... 20
4.7 HOW TO EXPRESS CARDINALITY CONSTRAINTS ACROSS BUILDING BLOCKS.. 21
4.8 HOW TO REFERENCE FUNCTIONS.. 22
4.9 HOW TO REFERENCE INSTANCES ACROSS APPLICATION PROTOCOLS... 23

4.9.1 The Need for External Instance Referencing ... 23
4.10 IMPORTING BUILDING BLOCKS INTO APPLICATION PROTOCOLS.. 24

4.10.1 Abstract Entities ... 24
4.10.2 BB Granularity... 24
4.10.3 Semi Automated Document Generation (Input Required) .. 25

4.11 COMPILING BUILDING BLOCKS.. 25

5. HIGH LEVEL BUILDING BLOCKS- THE SHIP COMMON MODEL .. 26

5.1 INTRODUCTION TO THE SHIP COMMON MODEL .. 26
5.2 OVERVIEW OF THE SHIP COMMON MODEL ... 26

5.2.1 Framework ... 27
5.2.2 Domain Models .. 27
5.2.3 Common Utilities ... 28

5.3 BULDING BLOCKS OF THE SHIP COMMON MODEL .. 29
5.4 THE FRAMEWORK... 30

5.4.1 Items and Definitions ... 30
5.4.2 Item Relationships and Item Structures ... 31
5.4.3 Representations .. 33
5.4.4 Usage Guidence ... 34

5.5 DOMAIN MODELS ... 35
5.5.1 Product Structure ... 35
5.5.2 Product Structure by System .. 36
5.5.3 Product Structure by Assembly .. 37
5.5.4 Product Structure by Space(Needs Input) .. 37
5.5.5 Usage Guidance ... 38

5

5.5.6 Connectivity(Needs Review)... 40
5.6 COMMON UTILITIES.. 42

5.6.1 Ship General Characteristics ... 42
5.6.2 Configuration Management (To be completed) ... 44
5.6.3 Location concepts .. 44
5.6.4 Basic Geometry .. 47
5.6.5 Ships ... 51
5.6.6 Features(Needs input) .. 52
5.6.7 Materials (Needs Review) .. 52
5.6.8 Units(Needs review) ... 52
5.6.9 Externally Defined References(Needs completing) .. 53
5.6.10 The Graphs Concept .. 55

6. QUALITY ASSURANCE.. 59

7. LIBRARY MAINTENANCE OF BUILDING BLOCKS AND ISSUES... 60

8. ISSUES.. 60

9. BIBLIOGRAPHY .. 60

10. APPENDIX A: CURRENT PROPOSALS FOR EXTERNAL INSTANCE REFERENCING............... 62

11. APPENDIX B: THE COMPLETE GRAPHS BUILDING BLOCK ... 64

12. APPENDIX C: COMMON APPLICATION ACTIVITY MODEL .. 67

6

1. INTRODUCTION TO THE ISO 10303 SHIP APPLICATION PROTOCOLS

ISO 10303 is an International Standard for the computer-interpretable representation and exchange
of product data. The objective is to provide a neutral mechanism capable of describing product data
throughout the life cycle of a product, independent from any particular system. The nature of this
description makes it suitable not only for neutral file exchange, but also as a basis for implementing
and sharing product databases and archiving.

This International Standard is organised as a series of parts, each published separately. The parts of
ISO 10303 fall into one of the following series: description methods, integrated resources, applica-
tion interpreted constructs, application protocols, abstract test suites, implementation methods, and
conformance testing. The series are described in ISO 10303-1.

The series of shipping industry application protocols assumes that the ship product model can be
divided into separate ship systems that each cover a key element of the ship for its whole life cycle.

The reason for doing this is as much to do with distribution of modelling work as it is with the need
to exchange subsets of the product model between agents in the Marine industry, let alone the prac-
tical aspects of exchanging the data associated with an entire ship.

These key elements are shown above: ship moulded forms, ship arrangements, ship distribution
systems, ship structures, ship mechanical systems, ship outfit and furnishings, and ship mission
systems. Each separate system is described by one or more different application protocols. The full
series of shipping application protocols (AP) is shown in Figure 1. Those boxes that are in bold
indicate those which are under development at the present time.

Simply put, each AP has three major parts; an Application Activity Model (AAM) to describe and
decompose the activities, input and output objects, controls and modifiers; an Application Refer-
ence Model (ARM) to describe the objects required, their structure and attributes; and finally an
Application Interpreted Model (AIM) to map the requirements to the types of objects understand-
able to other CAD systems.

However, because applications will need (for example) to be able to build up data about all the dif-
ferent parts and areas of a ship, (perhaps over a number of iterative exchanges over time), not re-
stricted to just a single AP, the data (& therefore, the ARMs) representing the various parts of the

Arrangements
(AP 215)

Moulded Forms
(AP 216)

Structures
(AP 218)

Communication

Navigation

Combat Systems

Outfit &
Furnishings

Machinery

Propulsion

Cargo Handling

Mechanical Systems
(AP 226) Piping

(AP 217)

HVAC

Electrical

Hydraulics/Pneumatics

Distribution
Systems

Ship Product Model

Figure 1: Ship Product Model

7

ship must also be able to be integrated. This requires that there is an overall mechanism, around
which, all the shipbuilding AP’s can be integrated. This mechanism should be central to each of the
AP’s structure such that the information is structured and organised in a consistent and similar man-
ner and is known as the Ship Common Model.

There are several by-products of this. For example, the complexity of the models should reduce
whilst the understandability of the different AP’s among modellers increases, allowing for both
easier interoperability and integration of the overall product model. Information can also be navi-
gated & retrieved in a similar manner, regardless of which AP is being used, through the use of such
a mechanism and can help the process of interpretation and development of the AIM.

2. SCOPE

This mechanism has been constructed using an approach known as the Building Block approach
which is described first, in the following introduction. This approach can also be used to semi-
automatically generate the documentation of the ARM for an AP in the shipbuilding group, and to
ensure this, a set of guidelines are presented in the second section to describe all the details neces-
sary to conform to the approach. In the third section this document describes the integration mecha-
nism known as the Ship Common Model, it’s architecture, parts and use. In the appendices you will
also find a description of the common Application Activity Model [Common AAM] used for ship-
building. This is intended, like the Ship Common Model, to provide a framework or root, from
which other Application Activity Models can be developed.

2.1 Abbreviations

For the purposes of this Part, the following abbreviations apply:

 AAM Application Activity Model

 AIM Application Interpreted Model

 AP Application Protocol

 ARM Application Reference Model

 BB Building Block

 CAD Computer Aided Design

 CAM Computer Aided Manufacture

 EMSA European Marine STEP Association

 IMO International Maritime Organisation

 PICS Protocol Implementation Conformance Statement

 SCM Ship Common Model

 SI Système International

 SOLAS Safety of Life at Sea

 SPM Ship Product Model

 UoF Units of Functionality

8

3. INTRODUCTION TO THE BUILDING BLOCK APPROACH

An Application Reference Model in the context of the ISO/STEP methodology is the representation
of application domain specific product model requirements (see [AP Guidelines]). The shipbuilding
community is developing several such reference models, each to provide the requirements for a dis-
tinct shipbuilding Application Protocol. However, these reference models overlap with respect to
the concepts found in the shipbuilding domain. The guidelines here address these overlaps. The
intention is to

• make such overlaps explicit through use of identical Application Reference Model subsets;

• to provide for a more efficient Application Reference Model development through the reuse of
elements (potentially) common to two or more Application Reference Models.

The principle means to support this is the concept of Building Blocks. A Building Block is a generic
EXPRESS-based construct for the confined representation of a Unit of Functionality in part or in
whole. Therefore, a Unit of Functionality may be represented by a single Building Block or many.

AP 2AP 1

UoF 1 UoF 2 UoF 3 Units of
Functionality

Building
Blocks

Application
Protocols

Figure 2: Building Block Approach

The Building Block concept and other elements introduced in this document do not exist in the
context of the development of Application Protocols in accordance with the ISO/STEP methodol-
ogy [AP Guidelines]. However, great care has been taken such that the result of the application of
the guidelines here can be easily transformed to yield a representation of an Application Reference
Model as required by the ISO/STEP methodology.

3.1 Defining Building Blocks

A Building Block (BB) is an EXPRESS-based specification that shall be used for the definition of
Units of Functionality. A Unit of Functionality may include none, one or several Building Blocks.
A Building Block consists of three schemas,

• an import schema providing an interface for those elements of other Building Blocks to be used
by the model schema of this Building Block,

• an export schema, making available those elements of the model schema intended to be used by
other Building Blocks, and

• a model schema, actually modelling the Unit of Functionality to be represented by this Building
Block. A model schema may USE or REFERENCE only from the import schema.

9

Note: An export schema shall state only those elements, which are potential candidates for being
used by other Building Blocks. Interpret this guideline rather restrictively!

In addition to the schemas, each Building Block shall have a Building Block Header.

3.1.1 Building Block Syntax – Example:
(*
Building Block Name: structural_parts
Editor: Thomas Koch (KCS)
E-mail: tk@kcs.se
Version: $Revision: 1.2 $
Status: $State: Draft $
Last Edit: $Date: 1993/09/30 13:00:12 $
Description: A structural part contains the properties common to
all elements of a structural system.
Open Issues:
Rationale: The structural part BB is created based on requirements
from AP218.
*)

The above header allows some automatic processing by the Building Block e-mail server. A tem-
plate for such a header can be obtained from the Building Block e-mail server (see section 7).

Note: the fields in the header (denoted by “$<field-name>: <contents> $”) for example, “$Date:
1993/09/30 13:00:12 $”, must be maintained if the processing is to succeed. However, the
<contents> field may be left empty as this will be replaced by the email server when the schema is
checked in with the relevant information.

SCHEMA example_import;
 USE FROM ship_parts_export (ship_part);
 USE FROM global_reference_system (location_on_mould_line);
END_SCHEMA;

The import schema describes all necessary links to other Building Blocks

SCHEMA example_export;
 USE FROM example_model (structural_part);
END_SCHEMA;

The export schema makes those elements of the model schema (below) public which may then be
used by other Building Blocks1.

SCHEMA example_model;
 ENTITY structural_part
 ABSTRACT SUPERTYPE
 SUBTYPE OF (ship_part);
 location: location_on_mould_line;

(*...*)
 END_ENTITY; (* structural_part *)
END_SCHEMA;

(*
changes from previous versions:
- ...
*)

Following the Building Block body, that is after the final END_SCHEMA statement, changes to the
Building Block compared to previous versions shall be stated in an informative, but detailed way.

Please note, that the name of the schemas of a Building Block shall be constructed as in the above
example, adding the terms import, export and model to the BB name to indicate the schema type.

1 However, see the section on BB usage

10

For further information on the Building Block methodology see [N327].

4. MODELLING GUIDELINES

4.1 Building Block Name

The name of a Building Block shall be easy to read and understand; abbreviations should not be
used. To avoid confusion of names the BB name is recommended to be plural. Thus, the main con-
struct that is covered by the BB can get the same name in singular.

Example: Building Block definitions - ENTITY Definition;

4.2 Size of Building Blocks

To give a concrete size of a Building Block in terms of lines or pages may not really be helpful2.
However, the following guidelines indicate, whether the size is reasonable:

• too large: is the scope such that the Building Block cannot be reused without tying in unneeded
Units of Functionality? E.g., the combination of Wireframe and B-Rep geometry into a single
Building Block is inappropriate.

• too small: is the conceptual scope such that the Building Block represents only a portion of one
Unit of Functionality and is not reused in another UoF? E.g., the split of the approval concepts
into two Building Blocks containing approval status and approval item respectively is inappro-
priate.

4.3 Existing Building Blocks

A list of existing Building Blocks is maintained in the AP Cross Reference List [LR12ADP] of the
STEP AEC Shipbuilding group. There both BB name, last update, owner and using APs are noted.

4.4 Commenting Building Blocks

The following provides guidelines on how to comment a Building Block. Please read this section
carefully, there are many guidance rules embodied within this section. The reasons for having these
guidelines are;

• to ensure that comments appear where necessary;

• to be able to produce STEP-related documents (semi-)automatically. Automatic processing pro-
vides the advantage that only a single source (the Building Block) needs to be maintained manu-
ally. Otherwise, changes of an entity or schema common to e.g. several Application Protocols
would require manual changes throughout.

Note: In order to produce STEP-related documents and specifically clauses 4.2 and 4.3 of Applica-
tion Protocols automatically and in high quality, the exact conformance to these guidelines is es-
sential! Further information about tools for such automatic processing can be obtained from the
editor (see cover page).

Note: The comment for an entity or attribute in a Building Block shall not directly represent an Ap-
plication Object respectively an attribute definition as required for clause 4 of an AP. A comment
shall only fulfil those requirements, which are sufficient to (automatically) create such definitions.
These requirements are stated in this section 4.4. Nevertheless, all Building Block developers

2Nevertheless, a Building Block of say 5 pages or more will attract more likely a critical look then say a Building Block
of 2 or 3 pages.

11

should be familiar with the latest version of the Supplementary directives for the drafting and pres-
entation of ISO 10303 (ISO TC184/SC4).

An example illustrating all of the following guidelines can be found on page 12.

4.4.1 Where to place comments

The following EXPRESS constructs shall be commented:

• (model) SCHEMAs

• TYPEs

• the individual entries of ENUMERATIONs

• ENTITYs

• attributes (including derived and inverse attributes)

• WHERE and UNIQUE clauses

• FUNCTIONs and PROCEDUREs, and

• RULEs .

In addition, the arguments of FUNCTIONs, PROCEDUREs and RULEs shall be commented.

A comment should immediately follow the semicolon terminating the introductory declaration
of these constructs. The only exception is the declaration of FUNCTION, PROCEDURE, or RULE
argument lists, where the last argument declaration is terminated by ")", omitting the semicolon. In
that case the comment should be inserted between the end of the declaration and the ")".

The declaration and comment shall be separated only by any number and mix of white space
characters (e.g. blanks, tabs and newlines).

Be aware that the Building Block description is used as the SCHEMA comment.

4.4.2 How to format comments

A comment itself may be formatted as thought appropriate. It should be a comment enclosed by
"(*" and "*)". The single line comments, each introduced by "--" are allowed by EXPRESS, and are
legal syntax, but it is strongly advised not to be used as line wrapping sometimes separates the "--"
from the rest of the comment creating errors when parsing the schemas.

The comment of a SCHEMA, TYPE, ENTITY, FUNCTION, PROCEDURE, RULE, INVERSE-
clause, WHERE-clause, or UNIQUE-clause declaration shall start with a "proper", i.e. complete
English sentence.

The comment of an attribute (except for an INVERSE attribute) declaration, an enumeration entry,
and a FUNCTION, PROCEDURE or RULE argument shall form a half-sentence (noun clause).
This sentence shall begin in such a way, that it makes up the right hand part of the following com-
ment structure:

<identifier commented on> : <right hand side to be supplied as comment>.

Given as an example the attribute centre: point, the comment could read for example the cen-
tre of the local co-ordinate system relative to its global co-ordinate system.
This would then appear as follows in a BB;

ENTITY XXX;

(* Entity comments *)

12

centre: point;

(* the centre of the local co-ordinate system relative to its global co-
ordinate system. *)

END_ENTITY;

Don’t state complete sentences, don’t use verbs in the beginning part of such a comment! When
having finished commenting a first Building Block, please, check again conformance to this rule!

Sentences and half-sentences (see above) within comments shall be separated respectively termi-
nated by the appropriate punctuation (colon, semicolon or point). A comment sentence following a
comment sentence shall start with an uppercase letter, unless punctuation rules require otherwise.

• No hyphenation shall be used to continue a comment on a subsequent line.

• Any comments in a line following an EXPRESS construct will not go into the final document.

• An empty line within a comment indicates the start of a new paragraph in the final document.

• Avoid any other formatting, it will not be reflected in the final document.

4.4.3 Keywords in comments

There are three classes of comment elements, which shall be highlighted in certain way. These are:

• Examples:

An example in a comment shall be enclosed by the keywords "EXAMPLE:" and
"END_EXAMPLE" written in uppercase letters.

• Notes:

A note in a comment used to emphasise a certain issue shall be enclosed by the keywords
"NOTE:" and "END_NOTE" written in uppercase letters.

• References to identifiers:

A reference to an identifier stated in the EXPRESS code of the current Building Block shall
have the form "<"identifier">". If an identifier is used in the plural form within the comment
but stated in the singular from in the EXPRESS code, the reference should be as follows:
"<"identifier">s". Identifiers shall appear exactly as they have been stated, i.e. including un-
derscores, if used, and with the same uppercase and lowercase letters. To avoid typing errors,
it is recommended to copy and paste long identifiers into comments.

• Illustrations:

Authors who would like to illustrate their Building Blocks may reference a PostScript file
(encapsulated postscript) from the Building Block. The reference should contain the following
information: a tag "FIG" , the authors initials and a file name. Example: < FIG AN-pic_5 >.
The authors have to take care that the files are sent to the Building Block server.

Consequently, the above keywords and symbols shall not appear within a comment except for
playing the above roles.

4.4.4 Example
SCHEMA version_model;
 (* This schema provides a general versioning mechanism. It
 supports concepts of single version derivation, alternatives
 and merging of versions. It also supports the concept of
 "current" versions.
 *)

13

 USE FROM version_import (identifier, label, node,
 directed_open_arc, directed_acyclic_graph);

 ENTITY version
 ABSTRACT SUPERTYPE
 SUBTYPE OF (node);
 (* a <version> is an element of a <version_history>
 described as a version graph. It identifies a
 piece of work within the set of alternatives and
 direct and indirect predecessors and successors of
 this piece of work in the <version_history>.
 NOTE: This schema does not foresee, nor define, what an
 item to be versioned actually is. A proposed
 mechanism to incorporate the concept of versioning
 is to inherit he appropriate versioning constructs.
 END_NOTE
 *)
 context: version_history;
 (* the version graph the <version> belongs to. *)
 name: identifier;
 (* the identifying name of the <version> within the set
 of <version>s defined by the <version_history>.
 NOTE: the <name> of a <version> is not intended to
 indicate the position of a <version> in a
 <version_history>. This structure is represented
 explicitly through the association of two <version>s
 modelled as a <version_relationship>.
 END_NOTE
 EXAMPLE: often encountered forms of names for software
 versions are "beta release", "0.1", "2.a" etc.
 END_EXAMPLE
 *)
 INVERSE
 current_declaration: SET OF current_version FOR current;
 (* a <version> may be defined zero or more times as
 current. *)
 UNIQUE
 contxt, name;
 (* the name of a <version> together with its context
 shall be unique within the its <version_history>. *)
 WHERE
 defined_in_context: version_in_context(SELF, contxt);
 (* a <version> shall be part of a <version_history>. *)
 END_ENTITY;

 FUNCTION version_has_context
 (
 vrs: version;
 (* the <version> to be checked whether it is part of a
 certain context. *)
 contxt: version_history
 (* the context the <version> shall be part of. *)
): BOOLEAN;
 (* the <version_has_context> function checks whether a
 <version> is part of a certain <version_history> or
 not. A <version_history> is referred to here as a
 context.
 *)
 RETURN (vrs IN contxt.nodes);
 END_FUNCTION;

 ...

4.4.5 Identifiers

Names of entities and entity attributes shall be nouns or qualified nouns. They shall not be verbs,
abbreviations etc. For example, do not use names like lib (for library), for_production_part,
defined_by etc. There are a small number of exceptions to this rule (e.g. defined_for) within the
Ship Common Model, but these have been reached through agreement within the group.

Note: this restriction is in addition to the above commenting rules necessary for automatic docu-
ment creation.

An entity name shall start with an upper case letter followed by lower case letters and underscores as
necessary.

14

An attribute name shall start with a lower case letter followed by lower case letters and underscores as
necessary.

4.4.6 Contents of Comments

In addition to the formatting guidelines stated above, this section provides guidance on what makes
a good definition.

Each SCHEMA comment shall include a statement of the content of the schema using Application
area terminology (e.g., an experienced structural engineer, naval architect, or designer).

Be aware that entity comments will become the STEP Clause 4 Application Object and attribute
definitions. They should also be written using application terminology. Each definition should de-
scribe the “real world” concept that an entity represents, and should not restate the EXPRESS defi-
nition. The following sections provide some guidelines for writing definitions and questions that
Building Block developers should ask themselves to critique their definitions.

Entity comments; The following rules apply to entity comments:

• The comment shall consist of a description of the entity defined within the context of the AP(s).

• The fact, that an entity is a sub- or supertype of some other entity shall not3 be stated in the
comment.

• The attributes associated with the entity shall not be enumerated in the comment (see footnote 3).

Entity attributes: The following rules apply to the documentation of entity attributes:

• The text that follows the name of the attribute shall consist of a description of the attribute de-
fined within the context of its entity.

• In the case of a logical attribute, the terms “logical flag” or “logical indicator” shall not be used;
both conditions that the attribute creates shall be indicated.

• The fact that an attribute is optional shall not be stated in the comment (see footnote 3).

• The fact, that an attribute is an aggregation shall not be stated in the comment (see footnote 3).

• The individual, possible values of an attribute of an enumeration type shall not be stated in the
comment (see footnote 3).

4.4.6.1 Criteria for Lexical Definitions

The following recommended practices are quoted from A Concise Introduction to Logic by Patrick
J. Hurley:

"Because the function of a lexical definition is to report the way a word is actually used in a
language, lexical definitions are the ones we most frequently encounter and are what most people
mean when they speak of the 'definition' of a word. Accordingly, it is appropriate that we have a set
of rules that we may use in constructing lexical definitions of our own and in evaluating the lexical
definitions of others."

Rule l: A lexical definition should conform to the standards of proper grammar.

Rule 2: A lexical definition should convey the essential meaning of the word being defined.

The attributes mentioned in the definition should be the important or necessary features of the thing
defined, not trivial ones.

3This information is redundant and can be created automatically from the EXPRESS code for clause 4 of an AP.

15

Rule 3: A lexical definition should be neither too broad nor too narrow.

A definition is too broad if the definition applies to things other than the things that are being de-
fined.

Rule 4: A lexical definition must not be circular.

A circular definition uses the definiendum in some way in the definition and is thus not genuinely
informative.

Rule 5: A lexical definition should not be negative when it can be affirmative.

Rule 6: A lexical definition should not be expressed in figurative, obscure, vague, or ambiguous
language.

A definition is figurative if it involves metaphors or tends to paint a picture instead of exposing the
essential meaning of a term. Example: "Architecture" means frozen music. A definition is obscure if
its meaning is hidden. One source of obscurity is overly technical language. A definition is vague if
its meaning is blurred. A definition is ambiguous if it lends itself to more than one distinct interpre-
tation.

Rule 7: A lexical definition should avoid affective terminology.

Affective terminology is any kind of word usage that plays upon the emotions of the reader or lis-
tener.

Rule 8: A lexical definition should indicate the context to which the definition pertains.

This rule applies to any definition in which the context of the definition if important to the meaning
of the definiendum. Whenever the definiendum is a word that means different things in different
context, a reference to the context is important.

4.4.6.2 Self-assessment questions for Entity or Application object definitions

The following questions should be used for the evaluation of entity or application object definitions.
They are drawn from the Qualification Manuals.

1. Is the definition understandable as written? Does it present the meaning of the object in a clear
and succinct manner?

2. Do the EXPRESS language constructs correspond to the textual definition?

3. Is the name of the entity appropriate? Does the attribute name make sense when read with its
entity? Does the name correspond to the definition?

4. Does the definition adhere to the rules of grammar and make good use of English?

5. Are there any unusual or domain-specific terms used that need clarification, replacement or
definition?

6. Is an illustration, example or explanatory note necessary to understand the definition? (or is
such an illustration or example available to aid the understanding?)

7. Does the definition/entity adhere to the scope?

8. Are references to informative material necessary?

9. Is the entity/object necessary within the context of its definition (e.g., the particular clause,
schema or application object in which it is defined)?

10. Is the object like some other object? Can the definition be merged with some other object or can
another object be used in its place?

16

11. Is this a commonly accepted term within the application domain? If the definition is the same at
the one in the Oxford English dictionary, it does not need to be defined. Is the usage of the term
within STEP different from normal or accepted application domain usages? (If so, pay atten-
tion to the clarity and sufficiency of the definition.

4.5 Restrictions on Usage of EXPRESS

4.5.1 Use of OPTIONAL Attributes

There is a potential danger of misusing the concept of optional attributes. This becomes evident
when a model has a relatively “flat” structure with many optional attributes. In many cases this can
be overcome through the use of sub-super typing.

Typical examples for misuse are:

• Mix of concepts in a single entity. To have meaningful instances of such an entity, only a subset
of the attributes shall be initialised for an instance. Consequently certain attributes have to be
rendered OPTIONAL. This situation can be avoided by subtyping. The common attributes define
a supertype, while the special attributes are aggregated in two or more distinct subtypes.

• Uncertainty about the meaning and relevance of an attribute. In that case the attribute shall not be
included until the open questions are resolved.

Use optional attributes restrictively and with care!.

4.5.2 Use of Enumerations

Enumerated types are frequently used. However, where there is a doubt about the list that has been
enumerated, a “user-defined” option can be used. For example, suppose we have an entity named
“panel”, one of the attributes of panel might require the type of panel to be made explicit. This
might be done using standard_panel_type, which is an enumerated type listing all the known types
of panels as shown below.

ENTITY panel
 type_of: standard_panel_type;

 .
 .

END_ENTITY; (* panel *)

TYPE standard_panel_type = ENUMERATION OF
 (side,
 bilge,
 transverse_wash_bulkhead,

 aft_bulkhead,
 strength_deck);
 END_TYPE; (* standard_panel_type *)

However, if there is a doubt that the enumerated list might be incomplete, or that special cases need
to be catered for, then we can introduce a “user_defined” option as shown below. Effectively, this is
used in conjunction with an additional optional attribute used to describe the case that is not catered
for in the list. Where the enumerated type list does cater for the case of concern, then the optional
attribute should not be used (during instantiation).

ENTITY panel
 type_of: standard_panel_type;

17

 user_defined: OPTIONAL TEXT;
 .

 .
END_ENTITY; (* panel *)

TYPE standard_panel_type = ENUMERATION OF
 (side,
 bilge,
 transverse_wash_bulkhead,

 user_defined,
 aft_bulkhead,

 strength_deck);
 END_TYPE; (* standard_panel_type *)

4.5.3 Use of ANDOR

ANDOR constructs shall be used with care to avoid a proliferation of complex entities. In some
cases, however, they are very efficient modelling constructs (see also section 5.4.4)

Care should be exercised when defining super/sub types, so that they do not span Building Block
boundaries. For example, when a new super type is introduced into a Building Block, it’s sub-types
should be created within that schema whenever possible. Exceptions to this rule include those
Building Blocks of the Ship Common Model which forms the framework for the Application Proto-
cols and are meant to be generic super types.

4.5.4 Use of STRING

All string attributes should be used in a consistent manner. Part 41 provides specific STRING types
which carry specific semantics. However, there are two human interpretable string types: LABEL

and TEXT. The type ID is an identifier which is not necessarily human interpretable. These types
should be used accordingly. Where a specific STRING (or set of) are expected, then these should be
made explicit through the use of an ENUMERATION type.

4.5.5 Use of SELECT Types

When SELECT types are used with care they can be extremely useful. SELECT types should be
used where the types defined differ in their own whilst they play the same role in another. There-
fore, a SELECT type can be used to choose between a number of different representations of a par-
ticular concept, which might differ depending upon the context. For example, “time” can be repre-
sented as either a <date>, <local_time> or both (date_and_time). In some circumstances, only a date
would be available (or needed) whereas at others the local time would be required. The example
below shows how a SELECT type can be used to provide for this.

18

time_componen

date_componen
date and time

minute_offset

hour_offset

coordinated universal time offset
zone

second_componen

minute_componen

hour_componenlocal time

year_componentdate

date_time_select

second_in_minute

minute_in_hour

hour_in_day

year_number

Figure 3: Example SELECT type

Otherwise a SELECT type can be used to allow the user to specify which level of detail should be
provided. For example, imagine a set of sub-super type relations where more and more attributes are
provided the more specific the sub-type. During an iterative exchange of information, the informa-
tion may become richer as more and more information is exchanged. The level of information can
be specified through the use of a SELECT type referencing sub-types at various levels of granular-
ity, allowing more & more of the attributes to become available during subsequent transfers.

From a compilation viewpoint, each entity referenced from within a select statement that is not
contained within the current schema, should be explicitly listed in the import schema for that BB.
For example, in the external_references BB the following SELECT type is defined;
TYPE Any_address = SELECT (Address,Universal_resource_locator);

 (* Either an ordinary postal address (Address) or a computer ad-
dress(Universal_resource_locator) *)

END_TYPE;

location

INTEGERport

identifier
machine_adress

other_protocol_type

protocol_type
protocol

universal_resource_locator

telex_number

electronic_mail_address

telephone_number

facsimile_number

country

postal_code

region

town
postal_box

street
street_number

label

internal_location

address

any_address

Organisation_resources BBExternal_references BB

19

Figure 4: SELECT types across schemas

Therefore, when using SELECT types such as <any_address> from within a schema which imports
this type from the external_references BBs, <address> is defined only indirectly and will need to be
explicitly imported. This is because EXPRESS prunes out entities referred to in “SELECT” state-
ments that are outside the current schema and not explicitly imported. This might appear a little odd
since the external_references BB itself imports the BB where Address is found and it is only natural
to assume4 that this would be inherited some how. Therefore, the following statement should appear
in the schema where <any_address> will be used.

SCHEMA some_schema_import;
USE FROM organisation_resources_export (Address);

END_SCHEMA;

See Figure 4: SELECT types across schemas above and also Figure 5: Global_id & External Refer-
ences within the SCM.

4.5.6 Use of Redeclarations

A redeclaration shall reference either the entity in which the attribute was originally declared or an
entity in which it has been redeclared already. Consider the following;

SCHEMA retype_test;

ENTITY Original;
 org_attr: NUMBER;
END_ENTITY;

ENTITY Middle
 SUBTYPE OF (Original);
END_ENTITY;

ENTITY Low
 SUBTYPE OF (Middle);
 SELF\Original.org_attr: REAL;
END_ENTITY;

END_SCHEMA;

A statement: SELF\middle.org_attr: REAL; in entity Low would be wrong in the context above. See
also section Error! Reference source not found. for usage guidance.

In addition it is also necessary to import explicitly the entity with the original attribute (entity Origi-
nal above) into the current schema with the redeclaration; implicit reference is not enough. This
entity needs to be taken into the "name space" of the current schema. This is done by including the
entity into a USE FROM list such as; USE FROM <Building block> (<Entity>);

For example, consider the following;
SCHEMA A;
 ENTITY A_1;
 an_attr: NUMBER;
 END_ENTITY;

 END_SCHEMA;

 SCHEMA B;

4 EXPRESS denies this as part of it’s pruning strategy

20

 USE FROM A(A_1);
 ENTITY B_1
 SUBTYPE OF(A_1);
 END_ENTITY;

 END_SCHEMA;

a) or b) or c)

SCHEMA C; SCHEMA C; SCHEMA C;

USE FROM B(B_1); USE FROM A(A_1); USE FROM B(B_1);
 USE FROM B(B_1);

ENTITY C_1 ENTITY C_1 ENTITY C_1
 SUBTYPE OF (B_1); SUBTYPE OF (B_1); SUBTYPE OF (B_1);
SELF\B_1.an_attr:REAL; SELF\A_1.an_attr:REAL; SELF\A_1.an_attr:REAL;
END_ENTITY; END_ENTITY; END_ENTITY;

END_SCHEMA; END_SCHEMA; END_SCHEMA;

Definition a) is not correct because due to the group reference (\) B_1 does not see its inherited attribute "an_attr". See
the minutes (produced 14-Mar-97) of the Hull Cross Section Validation Workshop at Lloyd’s Register held February
1997 for some logic on the visibility issue:

Definition b) is the only solution that works.

Definition c) is not correct because A_1 is not visible in schema C, i.e. is not within its name space. The SELECT type
cannot be used to "expand" a domain according to P11 (chapter 11.4.2).

4.6 How to Reference STEP Resources

This section describes how to define Application Objects and the EXPRESS representation of Non-
Shipbuilding specific Units of functionality (NSU) as part of an Application Reference Model. Ex-
amples of such units are: date_time_resources, geometry_model_resources, geometry_resources,
organisation_resources, representation_resources, support_resources, topology_resources and po-
tentially others.

Previously, the group had created “dummy” definitions to mirror the STEP resources, but these
were insufficient when compiling and validating the models using them. A decision was therefore
taken to use the BB three schema approach to allow those entities selected (via the import schema)
to be referenced as fully attributed definitions.

Whilst useful from the implementation point of view, when creating the ARM of an AP document,
the entities within the resources should only be identified by the entity name and the originating
(STEP) schema (i.e. not to be explicitly defined in the documentation) to avoid confusion during
the interpretation process when the mapping of the STEP resources will be redundant.

The basic assumptions are:

• whilst necessary, the Shipbuilding Group will maintain an interface to the STEP Resource sche-
mas through the use of the Building Block approach mentioned above (previously termed
“stubs”);

• the name of a NSU (or stub) shall end with the name “_resources” to allow easy identification;

• an NSU shall import the relevant entities from the STEP resources, USE them in the model
schema, before exporting them in the export schema.

• the whole NSU should be explicitly referenced as an application object whilst the
EXPRESS/EXPRESS-G definitions in clause 4 and Annex G of an application protocol, may
present more details of the NSU if desired.

21

• the interpretation of an NSU will be driven by a presumed one-to-one mapping between a NSU
and STEP generic resources.

For implementers, this means that the interfaced & defined entities can then be referenced by other
schemas and enable correct parsing of a closed set of schemas.

A reference to a (STEP) resource and its constructs is done like the reference to any other
EXPRESS schema:

SCHEMA hydrostatics; (* just an example *)
USE FROM geometry_resources_export (Cartesian_point, ...);
...
ENTITY Hydrostatic_position_value;

location: Cartesian_point;
END_ENTITY;
...

END_SCHEMA;

Summing up, traces of an NSU would be visible as part of the AP as a schema definition in clause 4
as application objects without attributes and as part of application assertions.

It is strongly suggested that stub “owners“ are also responsible for maintaining a corresponding full
version for implementation purposes.

The following is an example of a stub being complete in terms of its role as a “_resource” Building
Block:

(*
Building Block Name: date_time_resources
...
*)

SCHEMA date_time_resources_import;
(* The schema <date_time_schema> is defined in Part 41
 *)
 USE FROM date_time_schema (date,

calendar_Date,
ordinal_date,
week_of_year_and_day_date,
local_time,
date_and_time);

END_SCHEMA;

SCHEMA date_time_resources_export;
 USE FROM date_time_resources_model (Date, Local_time, Date_and_time,
 Calendar_date, Ordinal_date, Week_of_year_and_day_date);
END_SCHEMA;

SCHEMA date_time_resources_model;
 (* The schema <date_time_resources> provides concepts to specify
 date and time.
 *)

 USE FROM date_time_resources_import;

END_SCHEMA;

(*
changes from previous versions:
- ...
*)

4.7 How to Express Cardinality Constraints Across Building Blocks

One of the main purposes of the Building Block approach, the reuse of individual Units of Func-
tionality and corresponding modelling constructs, does not allow arbitrary mutual references be-
tween two or more Building Blocks. Reusing a specific Building Block would otherwise impose the
inclusion of other, potentially unwanted Building Blocks.

22

As a consequence, cardinality constraints by means of the INVERSE clause of EXPRESS cannot be
stated as if in a single schema, if the relationship between the two entities spans two Building
Blocks.

Cardinality constraints shall be expressed having the following guidelines for relationships between
Building Blocks in mind:

• A constraint may be stated as usual by an INVERSE clause, if the two Building Blocks together
represent a single Unit of Functionality, where one of the two Building Blocks is never expected
to be used just on its own. Note: use this rule with care.

• The inverse cardinality (0:?) exists always implicitly and by default, unless some specific con-
straint is given.

• The inverse cardinality (0:1) can be modelled using a unique clause:
ENTITY a;
 definition: b;
 ...
UNIQUE
 UR1: definition;
END_ENTITY;

The unique clause requires, that b is related to none or one a;

• In order to express other cardinality constraints, a where-rule is required.

4.8 How to Reference Functions

A function declared in a foreign schema can be visible in another schema only via a REFERENCE
interface. This referenced foreign function cannot be referenced by other schemas again, because a
referenced element is per EXPRESS definition not treated as if it was a locally declared element.
Consequently it is impossible to establish a referenced function visibility from an export schema to
other import schemas in our export/import model.

A solution is to redeclare the functions in both export and import schemas. Every redeclared func-
tion will call the corresponding referenced foreign function and return its result.

Example:
SCHEMA s1_model;

(* ...*)
 FUNCTION f (p1:INTEGER; p2:INTEGER):BOOLEAN;

(* this function f should be referenced in schema s2_model.
 *)

RETURN (TRUE);
 END_FUNCTION;

(*... *)
END_SCHEMA;

SCHEMA s1_export;
REFERENCE FROM s1_model (f);

FUNCTION f_e (p1:INTEGER; p2:INTEGER):BOOLEAN;
(* declare a new function f_e which calls the referenced
 function f and returns its result. *)
RETURN (f (p1, p2));

 END_FUNCTION;
END_SCHEMA;

SCHEMA s2_import;
REFERENCE FROM s1_export (f_e);

FUNCTION f (p1:INTEGER; p2:INTEGER):BOOLEAN;
 (* declare a new function f which calls function f_e and returns

 its result. The function f has the same functionality as
 the function f in schema s1_model. *)
RETURN (f_e (p1, p2));

 END_FUNCTION;
END_SCHEMA;

23

SCHEMA s2_model;
REFERENCE FROM s2_import (f);
(*... *)

END_SCHEMA;

4.9 How to Reference Instances Across Application Protocols

There are several issues related to the interoperability of APs, among others the capability of APs to
reference bits of the models of other APs. A piping AP may for example want to reference a plate
that is penetrated by a pipe although the plate is specified in a different AP. There are several solu-
tions for such references to external specifications. Usually bits of a model that are required by sev-
eral APs are included in all the APs that want to use them. This is the AIC approach. The ship-
building APs also apply a second mechanism which in addition allows for referencing instances that
are not within the scope of the current instance model; this is the external instance reference.

With this latter solution schema overlaps of a granularity down to single entity types can be han-
dled; this would be impractical using AICs. Also, such overlaps could be specified at “run-time”,
whereas AICs require standardisation. However, in contrary to using the AIC approach an instance
model does not know any of the properties or attributes of an externally referenced instance. The
solution has been to introduce these attributes within key locations in the SCM framework as de-
scribed in the Utilities section of the SCM.

Only entity types which carry version information should be candidates for instance references.
This includes all subtypes of “Definition”, and “Definable_object” (to capture item_structures and
item_relationships).

4.9.1 The Need for External Instance Referencing

External instance references are required for Shipbuilding APs for a number of reasons. For exam-
ple, when needing to;

1 Preserve relationships between instances across different ISO APs.
2 Preserve relationships between instances in the same ISO AP during partial transfers.
3 Preserve the identity of instances which are transferred in multiple exchanges.
4 Preserve the identity of entities during joint engineering tasks.
5 Preserve the identity of entities during concurrent engineering tasks.

Each of these are elaborated a little further below to provide guidance as to when an external refer-
ence may or may not be required.

1. Is it necessary to preserve relationships between instances which are transferred using different ISO
APs. For example, a structural penetration defined in AP 218 may reference the pipe defined in AP
217 which passes through the penetration. A plate defined in AP 218 may reference a molded hull
form defined in AP 216 defining a hull or bulkhead.

2. Is it necessary to preserve relationships between instances which are transferred using the same
ISO AP, but in separate transfers. It is not feasible or practical to exchange an entire ship in a single
transfer. Partial transfers of a ship based on systems, assembly, or spaces must be supported. In
this case relationships between instances in the same AP must be preserved. For example, a pipe in
one data transfer may be connected to a pipe which was transferred in another exchange.

3. Is it necessary to preserve the identity of instances which are transferred in multiple exchanges so
that the instances can be intelligently processed (rather than simply duplicated). This can occur if
transfers are based on several different criteria, e.g. space or system, or that several transfers of the
same data are made over time. It is also necessary that the identity is based on a particular version
of an instance, e.g. a “Definition” in the Ship Common Model. In addition, it may be necessary to in-
clude the instance identifier in version history so that updates can be made.

4. Is it necessary to preserve the identity of entities in order to support joint engineering tasks. For ex-
ample, a contractor may exchange a design with a subcontractor who details the design and trans-
fers it back to the contractor. The detailed design will reference instances which were transferred in
the original design. In order to use the detailed design, the contractor must maintain the identity of
the original design objects and also recognize any revisions to these objects.

24

5. Is it necessary to preserve the identity of entities in order to support concurrent engineering tasks. In a
concurrent design task, identifiers are required for configuration management. Clearly, instance ref-
erences must be used for this purpose. However, identifiers for additional, lower level instances may
also be required, e.g. underlying geometry. Here, the identifiers are immutable and persistent in the
software systems.

As a guide, at least the first two of the requirements stated above may require instance referencing,
whereas the last three may be satisfied by the use of a global unique identifier (GUID) - described
below.

Version information also is required in order to maintain consistency between transfers and envi-
ronments. For example, a plate may reference a moulded form, but requires only the underlying
surface geometry. If a reference to the moulded form is used then the referencing AP must use the
moulded form schema to find the surface, i.e. the moulded form schema must be loaded and ac-
cessed. However, a direct reference to the surface would cause problems if the moulded form defi-
nition later referred to a different surface.

A global unique identifier (Global_id) identifies a unique version of a definition. Hence, a
Global_id must be assigned when a new version of a definition is created. This permits concurrent
updates to the same definition at several sites. This is described in more detail within section 5.6.9.2
of the SCM described in the next part of this document.

However, before concrete guidance can be provided there are still some issues5 under discussion that will need to be
reflected in this document.

4.10 Importing Building Blocks into Application Protocols

4.10.1 Abstract Entities

Abstract supertypes that are imported into an AP by a Building Block, but that are not specialised in
that AP, shall be removed from the AP.

4.10.2 BB Granularity

Given that the scope of some Application Protocols is not directly identical to those Building
Blocks which provide the functionality required, there may be occasions where the whole of a
Building Block is not needed.

Consider the following case (raised as an issue);

BB performance: USE FROM planned_maintenances (Maintenance_schedule);

BB moulded_form_representation: USE FROM offset_table_representations
(Offset_table_representation);

These USE FROM statements can make a large extension for a complete AP-model, which is com-
pounded by the fact that AP218 does not need the ENTITY <Maintenance_schedule> and
<Offset_table_representation>, but has to put them into the complete AP-model because they are
imported by a BB which is used.

This could indicate several things;

5 (However, for a summary of the issues relating to this, see the minutes from the ISO Shipbuilding meeting held in San Diego, 1997, and also
Annex G covering this topic).

25

• that the scope of the BB’s is not fine or narrow enough, & therefore, perhaps the BB is not
granular enough & should be split into several BB’s to cover this functionality.

• that the scope of the AP has been set too wide.

• that the interfaces should be re-worked.

In this instance, the resolution agreed resulted in a check on the scope of AP218 and as a result
many of the BBs referenced were removed from AP218 and subsequent interfaces were re-worked.

4.10.3 Semi Automated Document Generation (Input Required)

4.11 Compiling Building blocks

A note about compilers:

When compiling Building Blocks, especially when creating a single schema from many different
ones, it has been established that compiler technology differs from one compiler to another. Also,
the discovery of one error may mask many others. Conversely, one error might also introduce many
others, depending upon the implementation of the compiler used. It is also evident that different
compilers have different compilation strategies which can be exploited when relevant. Some com-
pilers also go to deeper levels of compilation and checking (against Part 11) than others. However,
despite the different strategies and levels of implementation of the EXPRESS language, there is still
no perfect tool available, and whilst this situation remains, we must make the best use of the tools
available.

It should be borne in mind that a single BB is unlikely to be entirely self contained and that compi-
lation strategies should be aimed at generating correct long forms of schemas where many entities
inside many different BBs are brought together and made available from within one schema (e.g.
AP218). From this perspective, it is not always necessary to ensure that every BB can be compiled
from it’s own set of direct references as the BBs referenced by it will themselves bring their own
necessary BBs into the longform schema. In this sense, those definitions not accessible outside BB
schema walls, but which are implicitly interfaced, are resolved when the longform is generated.

Notwithstanding this, the following types of errors can usually be resolved by checking that all of
the required IMPORT/EXPORT & MODEL schemas have been defined adequately.

For example errors of the following types;

Empty Select Types, Unresolved Attribute Domains, Subtype not Defined, Attribute Rede-
claration, Implicit Interface Item not visible, Undefined Entity in Group Reference, Unre-
solved Qualified Reference;

- may all be resolved through the proper use (as defined in the EXPRESS Reference Manual - Part
11), of the IMPORT/EXPORT & MODEL schemas. These errors may be nested to several levels
deep and result in the import/export of entities not used directly within the model schema.

As a general rule, entities should only be imported directly, and therefore, exported from one BB
where the entity is defined rather than indirectly through the export schema of another. Apart from
this being good practice, a “third party” BB may change it’s scope or requirements removing the
need to export the entity being relied upon, thereby introducing an error in the import schema.

26

5. HIGH LEVEL BUILDING BLOCKS- THE SHIP COMMON MODEL

5.1 Introduction to the Ship Common Model

The Ship Common Model (SCM) is a set of Building Blocks (BB)6 which are used in the Ship
Product Model (SPM) context. The Ship Common Model provides a modelling framework for the
Ship Product Model, a set of domain7 (independent & re-usable) product-structure models that are
required for more than one Application Protocol (AP), as well as a set of commonly used constructs
or utilities such as those used for configuration control & management concepts. The goal of the
Ship Common Model is to contribute to the integration and overall consistency of the ARMs of the
different ship APs. Thus, it is a means of integrating the requirements specified to a uniform con-
ceptual model.

The Ship Common Model, described in this document provides this framework and is the basis for
ongoing ship AP development within the ISO shipbuilding group.

It is aimed at AP editors responsible for the production of the various AP’s outlined in Figure 1, and
to the Building Block owners who model the functionality used in many of the AP’s.

The ISO AP Development Guidelines [AP Guidelines] state that each AP should have a data plan-
ning model defined in terms of the major units of functionality used in the AP and should show the
relationships between these and the framework. This provides an implicit requirement that each AP
should conform to the framework and be consistent with the modelling techniques that have been
used.

5.2 Overview of the Ship Common Model

This section introduces the different parts of the Ship Common Model, which are then described in
greater detail in the subsequent sections. As described above, the Ship Common Model can be split
into three parts; the overall modelling framework, a set of domain independent (& re-usable) prod-
uct-structure models, and a set of common utilities such as configuration management concepts and
measurement units. The structure & purpose of each of these is described below.

6 A Building Block is an EXPRESS schema that is big enough to represent a concept and small enough to be shared by
several contexts. Building Blocks are inter-linked.

7 Domain - as in an area of discourse

27

Item Item_structure

Definition

Representation

Item_relationship

assemblyspace system

panelcompartment

ship

piping

part

Set

pipe structure

Item Item_structure

Definition

Representation

Item relationship

geometry

Set

Set

feature

Set

shape

function,
design,
manu-
facturing
...

Basic geometry
Location Concepts

General Characteristics

Configuration management
External Referencing

Units

Materials

Set

Domain ModelsFramework

Utilities

Figure 6: Parts of the SCM

5.2.1 Framework

The modelling framework part of the Ship Common Model provides the realisation of the general
concepts of how to relate things, how to define their properties and how to represent them. Effec-
tively, this high level approach forces the product model to be split up across the main constructs of
the framework, namely; items, definitions and representations whilst being linked via a number of
generic relationships. One of the benefits of this approach is that it enables a better management of
information such as need to organise the data according to different viewpoints and in the represen-
tation of life-cycle dependent requirements.

This framework introduces and resides in the following Building Blocks:

• definitions;

• generic_product_structures;

• representation_resources.

See section 5.4 The Framework, for a more detailed description of how the Framework is con-
structed and guidance on how it should be used.

5.2.2 Domain Models

On top of the framework, the domain models provide a set of templates for organising the product
being modelled along a number of different axes or views, such as product by system, by space or
by assembly. However, the templates also provide a set of implicit modelling techniques for the
organisation of the product data. These domain models represent generic structures which, (whilst

28

conforming to the framework) allow the modeller to organise the data of the product (through a
process of specialising the generic concepts), according to their needs. In doing this the modeller
negates the need to invent disparate modelling strategies for each AP product structure. The benefit
of this approach is that it reduces the modelling effort, allows consistency, conformity and interop-
erability with the other AP’s that already conform to this approach.

Some of the drawbacks of this approach are that without a proper understanding of the framework
or the domain models, the structure of the resulting model may appear incongruous to the organisa-
tion first proposed by the modeller. The reasons for organising the data model along the lines of the
templates are not focused entirely upon the need to reflect real world objects, but also from the
needs of the framework to support interoperability, integration and consistency.

It is not intended that each of the domain models is used by a new AP. The type of structuring
needed for the product model should become evident through the initial modelling work, although it
is not uncommon for a number of structuring techniques to be used in an AP, and the generic do-
main model specialised accordingly. See section 5.5 for more detailed description on each and guid-
ance on their use.

The current domain models8 reside in the following Building Blocks:

• product_structure_by_system;

• product_structure_by_assembly;

• product_structure_by_space9;

• connection_topologies9 (product structure by connectivity);

5.2.3 Common Utilities

The Common Utilities are a group of constructs that will be required by most AP’s. The utilities
differ from the Framework & Domain Models through the fact that for the majority of cases, the
utilities are ready for use and do not require any further specialisation for use in an ARM. Many
have been created specifically for shipbuilding although some may be able to be used externally.
The utilities group together the following Units of Functionality and their respective Building
Blocks. The actual concepts used from each BB is described in section 5.6;

• ship’s general characteristics; including the basic ship’s length, breadth, type and class (see
Building Blocks designation_characteristics and dimension_characteristics).

• product’s location in relation to the ship’s; including for example, the ship’s co-ordinate sys-
tem, local co-ordinate systems, spacing grids etc., (see Building Blocks
global_axis_characteristics, local_coordinate_systems, lo-
cal_coordinate_systems_with_station_reference and spacing_grids).

• ship’s (or product’s) basic geometry such as ship point, curve & surface, (see Building Blocks
Moulded_form_point, Moulded_form_lines and Moulded_form_surfaces).

• ship’s (or product’s) configuration management (see Building Blocks versions, changes & ap-
provals).

8 More may be added in the future

9 To be completed

29

• item (ship) itself are required since all data defining the product need to be related to the ship,
which might exist in any life cycle stages (see Building Blocks ships);

• ship’s units; the types of measures to be used such as metres, millimetres etc., (see Building
Blocks measures).

• references to other models and instances (Building Blocks documents & external references).

Again the contents of each of these may or may not be used by every AP, but should an AP require
such information then these constructs should be used rather the creation of new or disparate ones.

5.3 Building Blocks of the Ship Common Model

The following Building Blocks constitute those required to construct the full architecture of the
Ship Common Model for all shipbuilding APs. Later sections describe what each of these Building
Blocks contribute. The list currently includes:

• approvals

• changes

• connection_topologies

• date_time_resources

• definitions

• designation_characteristics

• dimension_characteristics

• documents

• events

• external_references

• generic_product_structures

• geometry_model_resources

• geometry_resources

• global_axis_characteristics

• interconnections

• local_co_ordinate_systems

• local_co_ordinate_systems_with_station_reference

• materials

• measures

• moulded_form_lines

• moulded_form_points

• moulded_form_surfaces

• organisation_resources

• p41_resources

• p42_resources

30

• p43_resources

• parts

• product_structure_by_assembly

• product_structure_by_system

• representation_resources

• ships

• spacing_grids

• support_resources

• topology_resources

• versions

Not all of these Building Blocks need to appear in each of the shipbuilding APs.

5.4 The Framework

Figure 7 describes the "backbone" of the different ARMs. It can be reused in the APs and special-
ised by sub-typing from the concepts presented and described in this section.

5.4.1 Items and Definitions

There are two major tasks when creating a product model:

• defining concept by specifying their properties
• describing how concepts are related to each other.

The properties of a concept are, in terms of modelling in EXPRESS, attributes of an entity. Also
the relationship between two concepts could be modelled as an entity (such as a ‘relationship-
entity’) with then two attributes of type ‘entity’. In order to instantiate the ‘relationship-entity’
would therefore, require every that non-optional ‘entity’-attribute be available.

This dependency is often not desired. It can be removed by separating the concept from it’s proper-
ties - just from the modelling point of view, and allowing the concept to exist in an incomplete state
until all of it’s properties are specified (i.e. making it just a placeholder without attributes, but able
to join relationships). Thus, in the Ship Common Model concepts may exist but the objects that they
represent do not, until a definition of the properties have been defined. The SCM provides for this
through the use of two constructs; Item (for concepts) and Definition (for properties).

The concept (or placeholder) is called Item; the entity carrying the properties is called Definition.
While a Definition must be defined for an Item (i.e. there is an existence constraint saying ‘no
Definition without associated Item’) an Item may exist without any Definitions. This so called
"defined_for" relationship shall be the only relationship between Items and Definitions; no other
attributes shall cross this boundary.

(ABS) Item(ABS)
Definition

defined_for S [1:?]

(INV) definitions S

Figure 7: Relationship between Definition & Item

31

An Item has an attribute called "id". This is a life-time identifier of the thing. In some contexts this
identifier is referred to as tag-number, this is an identifier for a function rather than for an instance.

The Ship Common Model currently distinguishes among the following Definitions:

• <Design_definition>
• <Functional_definition>
• <General_characteristics_definition>
• <Lightship_definition>
• <Loading_condition_definition>
• <Manufacturing_definition>
• <Parametric_definition>
• <Ship_material>
• <Structural_part_survey_definition>
• <Technical_description>
• <Tonnage_definition>.

This collection shows that the concept of Definition at least captures the following categories of
properties of objects:

• characteristics

• functionality

• life-cycle.

5.4.2 Item Relationships and Item Structures

An Item can be instantiated without the need to instantiate any Definition - a data transfer that is
based on this is complete from the instance model point of view (i.e. it is a valid data transfer),
while being incomplete from the logical point of view (i.e. the thing which Item is the placeholder
for, is not yet completely defined).

This allows us to create instances of Items (the placeholders) and to describe their relationships
(Item_relationship) on the same level of completeness.

Item_relationships may , for instance, be used to model that:

• one concept can be connected to another concept;
• one concept can be bounded by another concept;
• one concept can be derived from another concept.

Note that relationships that only carry existence constraints without any additional information need
not be modelled by Item_relationships, because existence constraints are implicitly provided by
the EXPRESS modelling language. The following relationships may for instance better be modelled
as attributes to Item than as Item_relationships:

• one concept can be realised by another concept;

(ABS) Item(ABS)
Definition

defined_for S [1:?]

(INV) definitions S

(ABS) Item_
relationship

Item_1, item_2

Figure 8: Item_relationship

32

• one concept can be part of another concept;
• the existence of one concept can depend on the existence of another concept.

Besides Item_relationships describing relationships between Items there is a need for a container-
like construct able to collect Items and/or Item_relationships from a specific point of view. Such a
container is provided by Item_structure (see Figure 9: Item_structure) which functions in a similar
way as Item_relationship. However, concepts (as well as their relationships) can be collected into
an Item_structure without having any property defined, simply by collecting the placeholders of
these things (i.e. the Items and Item_relationships) into such a container.

These three entities are located on the same level of completeness, i.e. no property has to be defined
for the thing represented by its placeholder Item to say it exists, it may be related to another thing,
and it is collected into a structure within a certain context.

In fact there is no reason for an Item_relationship not to have properties that are special to this
relationship and that are not associated with the one or more concepts taking part in this relation-
ship. This makes it desirable to allow Item_relationships to have Definitions as well. And why
shall an Item_structure not have properties special to this collection and not associated with the
Items or Item_relationships it holds.

This requirement asks for a solution that allows Definitions to be defined for Items,
Item_relationships or Item_structures. The solution is to move this common behaviour one level
up and let the three entities inherit the ability to be defined is this way . This is provided for in the
SCM by the <Definable_object> construct as shown in Figure 10: Relationship between Items,
Item_structures, Item_relationships & Definitions.

(ABS) Item (ABS) Item_
relationship

Item_1, item_2

(ABS) Item_
structure

relationships S

items S

Figure 9: Item_structure

33

5.4.3 Representations

Every property of a concept, and therefore, every Definition of a Definable_object, may be de-
scribed in many different ways. The definition of the shape of a plate for example, may be repre-
sented by its parameters length, breadth and thickness, or by a rectangular drawing and a thickness,
or by a solid shape model. Each type of description may be useful in a different context. The draw-
ing description could for example be useful for a production planning definition of the plate to be
applied in nesting of pieces for flame-cutting. The solid description of the plate could relate to its
design definition intended to support collision control.

In general, the detailed shape of a property shall be modelled as a Representation. However, if a
few simple attributes are sufficient and if the usefulness of the description is not context dependent,
properties may be referenced directly by a Definition. The parametric plate description is a typical
example of this and is a candidate for direct inclusion into a Plate_design_definition. The descrip-
tion as a solid should be done by a Representation.

A typical relationship between a Definition and a Representation is shown in the figure below.

Other subtypes of Definition may be constrained to be certain subtypes of Representation.

The Representation concept itself is identical to the Representation in ISO 10303-43. Thus, the
Representation of the Ship Common Model consists of a set Representation_items. It is up to
each Representation specialisation to constrain the valid types of Representation_items. Repre-
sentations may also be related to each other with or without transformation by relationship entities.

(ABS) Item (ABS) Item_
relationship

Item_1, item_2

(ABS) Item_
structure

relationships S

items S

(ABS)
Definition

defined_for S [1:?]

(INV) definitions S

(ABS) Definable_
object

Figure 10: Relationship between Items, Item_structures, Item_relationships & Definitions

Shape_
representation

items S[1:?]

Representation
representations S[0:?](ABS)

Design_
definition

(ABS)
Definition

Representation_item

Figure 11: Relationship between Definitions & Representations

34

The Ship Common Model currently distinguishes among the following Representations:

• Shape_representation10

They are referenced by redeclararations (also see section 4.5.6) of the general relationship between
Definition and Representation (see example 2).

5.4.4 Usage Guidance

For items and definitions;

• When defining sub types of <item> or <definition> care should be taken to restrict the use of
complex entities. This should be done by the use of a WHERE rule to restrict the type to be
“one of” the sub types rather than allowing the use of complex entities.

• The traditional mechanism for constraining the relationship between <item> and <definition> is
through the redeclaration of the <defined_for> attribute. However, it is not always the case that
a single <definition> will only be used for one <item>.

Example 1; a <parametric_feature_design> may be <defined_for> several lifecycle stages of a
<feature>, therefore, it may be <defined_for> both a <manufacturing_feature> and a
<design_feature>. It is also worth noting that many instances of an <item> may reference a single
instanced of a <definition>. Hence, a number of instances of a <manufacturing_feature> (perhaps
controlled by versioning) may all refer to a single instance of <parametric_feature_design>.

The following example shows how a design_definition is specialised for compartments and how the
type of valid representations for the new entity can be constrained.

Example 2:

Compartment is an Item. One of the Definitions it may have is the Compartment_design_definition. The first at-
tribute redeclaration below establishes this relationship. As Compartment_design_definition is a De-
sign_definition and inherits the attribute representations, this can be redeclared in the second attribute statement
below to only allow Compartment_shape_representations to be valid Representations of a Compart-
ment_design_definition.

ENTITY Compartment_design_definition
 SUBTYPE OF (Design_definition);
(* ... *)
 SELF\definition.defined_for: SET [1:?] OF Compartment;
(* ... *)
 SELF\design_definition.representations: SET [1:?] OF Compartment_shape_representation;
(* the Compartment_shape_representation for which the Compartment_design_definition applies.
*)

... ;
END_ENTITY;
The various parts described above can be shown below in the EXPRESS-G diagram presenting the
contents of the three Building Blocks discussed above.

10 Moulded_form removed as now a sub-type of representation. Hydrostatic_table is not a generic representation likely
to be specialised by other AP’s

35

5.5 Domain Models

5.5.1 Product Structure

It was found that in a number of places within the current shipbuilding APs that similar objects were
related to each other and needed to be collected together under certain points of view. Furthermore
there is a need to be able to create collections that consist not only of those objects, but also of other
collections. The requirement is to create hierarchies of collections of objects and their relationships
from different points of view. Examples are:

• The surface of the ship hull that may consist of a number of sub-surfaces (bow shape, bottom
shape, parallel midship shape, stern shape, shape of appendices) related by topological and geo-
metric continuity conditions, e.g. the starboard side parallel midship shape is a part of a mathe-
matical plane bounded by (topological relationship) the bow shape, the bottom shape and the
stern shape and has a G2 continuity condition (geometrical relationship) to them.

• The steel structure of a ship consists of blocks of groups of design panels of plates and profiles
with the geometry derived from the ship interior and moulded form (geometric relationship),
which are bounded by the interior and moulded form or by other structural parts (topological re-
lationship) and which are welded together (joint relationship).

• The piping system of a ship consists of the fuel system, the fresh water system, the ventilation
system ... where each of them may consist of subsystems of pipes, valves, flanges, pumps ...
which are positioned with respect to the steel structure or to the interior or moulded form
(topological relationship) and which are welded, screwed or whatever together and fitted to the
steel structure (joint relationship).

In general, each collection of similar things and their relationships, appearing or getting realised
(ideally or materially) during the life cycle of the product ship can be modelled as a product struc-
ture.

Common to all these examples is that there are single objects that are grouped together by several
levels of collection hierarchy and that often are related to each other arbitrarily. It seems to be
straightforward to model this in a common and generic way and to provide it for reuse.

This is the entry point to the Product Structure Concept. It is based on the three basic types:

shape_representation

rep_2
rep_1

representation_relationship

(ABS)
design_requirement

representations S[0:?]
(ABS)

manufacturing_definition

(ABS)
parametric_definitionitems S[1:?]

representation

representations S[0:?] (ABS)
design_definition

(ABS)
functional_definition

definition_2
definition_1

definition_relationship

item_2

item_1 (ABS)
item_relationship

relationships S[0:?]

items S[0:?]

(ABS)
item_structure

version_id

defined_for
(INV) definitions S[0:?] S[1:?]

id
(ABS)

definition

id

(ABS)
definable_object

(ABS)
item

identifier

representation_item

Figure 12: SCM Framework

36

• an Item, that are the objects of concern (the things),

• an Item_relationship, that sets two (or more) <Items> into a common context (the relationship
between the things),

• an Item_structure, that collects Items and Item_relationships under a special point of view
(the container for things).

These three entities are abstract that means not instantiable. However, their functionality to relate
items and to collect items and their relationships can be reused by more special entities, that is by
their subtypes.

5.5.1.1 Parts

A Part is an Item that does not really differ from it’s parent. The reason for it’s existence is to be
able to restrict special Item_structure subtypes (such as System or Assembly) & to only collect
Parts and not every Item. Without Parts, it would not be possible to make this restriction and by
this e.g. an Assembly would be allowed to collect also every other kind of Item (such as
Moulded_form, Space, Ship ...). The same is valid for the Item_relationship subtypes.

Figure 1.: EXPRESS-G of Generic Product Structure - Part Link

This means Part is the atomic Item in all Item_structures collecting Parts.

Parts have been created by AP218, but can, of course, be reused by any other AP. If there is a need
for another Item on this level, e.g. if other Item_structures shall be restricted not to collect every
Item and not either Parts, it must be created by the AP. An example is Feature of AP218.

There are actually four different product structures in use and more or less ready modelled by the
shipbuilding APs. They will be described below.

5.5.2 Product Structure by System

Product Structure by System is intended to provide the abstract supertypes for different systems
such as piping system, structural system, machinery system, electrical system ... and for their rela-
tionships.

A System is a function oriented, one-disciplinary view on a group of Items in a way that only pip-
ing components or structural components ... are to be seen. It allows for a hierarchical, that is tree
structure of Systems. Systems may consist of other (sub) Systems. A System is both an Item and
an Item_structure. WHERE rules in System ensure that a System can only consist of Parts and
other (sub) Systems.

37

5.5.3 Product Structure by Assembly

Product structure by Assembly specifies how the details of a ship, such as pipes, plates, machinery,
cableways, shall be collected into greater units from the work preparation point of view. Such a unit
is called an Assembly. Product Structure by Assembly gives the constructs for defining Assemblies.

Usually assemblies are cross discipline groupings consisting of pipes, structural parts (plates and
profiles), machinery, cableways etc. Therefore, Assembly is not abstract, but ready for use.

It allows for a hierarchical, that is tree structure of Assemblys. Assemblys may consist of other
(sub) Assemblys. An Assembly is both an Item and an Item_structure. WHERE rules in Assem-
bly ensure that an Assembly can only consist of Parts and other (sub) Assemblies.

5.5.4 Product Structure by Space(Needs Input)

<Does not exist - Input by Pete?>

Product structure by Space specifies how the spaces of a ship are related to each other.

Comment:

In opposition to the old implementation I would suggest to make <Compartment> to be the
„<Part>“ of Product Structure by Space. This means <Compartment> is no longer a subtype of
<Space> but now it should be an Item. In this way it would be the atomic entity in a <Space>.
<Space> should be restricted to collect <Compartments> and (sub) <Space>s. Having this a
<Space> may consist of sub <Spaces> and/or of <Compartment>s, allowing a hierarchical tree of
<Space>s with <Compartment>s at the tree path leaves.

Figure 13: Product structure by system

Figure 14: Product Structure by Assembly

38

5.5.5 Usage Guidance

5.5.5.1 How to reuse an existing Product Structure for an AP

1. Step: Decide which existing Product Structure meets your requirements.

2. Step: If needed create your own Part11 subtype such as Piping_part. It may be non-abstract and,
by this, instantiable, or abstract and, by this, supertype for more special Parts such as Pipe,
Valve or Flange.

3. Step: If needed create your own Part_relationship subtype to be able to relate your newly cre-
ated Parts. Restrict it only to be able to relate those Parts that meet your requirements by rede-
fining the item_1 and item_2 attributes inherited from Item via Part.

4. Step: If the structure entity of the chosen Product Structure is abstract (such as System), create
your own non-abstract subtype (e.g. Piping_system). Restrict it only to be able to collect those
Parts and Part_relationships that meet your requirements by adding WHERE rules to the newly
defined Product Structure subtype applying to the items and relationships those attributes inher-
ited from Item_structure via e.g. System.

5. Step: Create all desired Definitions for the newly created Parts such as
Pipe_functional_definition, Pipe_design_definition, Pipe_manufacturing_definition ... Re-
strict them only to be plugged to those Parts that meet your requirements.

5.5.5.2 How to create a new Product Structure for an AP

1. Step: If needed make your own direct Item subtype such as Compartment. It may be
non-abstract and, by this, instantiable, or abstract and, by this, supertype for more special Items such
as Tank, Cargo_compartment or Habitable_compartment.

2. Step: If needed, make your own Item_relationship subtype (such as Compart-
ment_relationship) to be able to relate your newly created Items. This may again be either abstract

11 „Part“ is only the placeholder. It may be substituted by every Item of the same level. At the moment only Part exists
on this level within the Ship Common Model. Others could be Compartment or Feature (the latter still exists but is not
SCM member)

Figure 15:Product Structure by Space

39

or non-abstract depending on the usage intent. Restrict it to only be able to relate those Items that
meet your requirements by redefining the item_1 and item_2 attributes inherited from
Item_relationship.

3. Step: Create your own Item_structure subtype (such as Space). If you wish to be able to have
an implicit tree structure, make it also subtype of Item. Restrict it only to be able to collect those
Items and Item_relationships that meet your requirements by adding WHERE rules to the newly
created Item_structure applying to the items and relationships attribute inherited from
Item_structure.

Figu
re 16: Reuse of an existing Product Structure for an AP

4. Step: If needed and if your newly created structure is subtype of both Item and Item_structure,
make your own Item_relationship (such as Space_relationship) for relating your structure to other
Items or Item_structures. Restrict it only to be able to relate those Items that meet your require-
ments by adding WHERE rules to the newly created Item_relationship applying to the item_1 and
item_2 attributes inherited from Item. Make sure, using another WHERE rule, that at least one of
the related Items is of your newly created structure type. Also make sure, using a WHERE rule, that
the newly created structure type cannot be a substructure (neither direct nor indirect) of itself
(acyclic see section 5.6.10).

5. Step: Create all desired Definitions for the newly created Items such as Compart-
ment_functional_definition, Compartment_design_definition, Compart-
ment_manufacturing_definition, Space_functional_definition, Space_design_definition,
Space_manufacturing_definition ... Restrict them only to be plugged to those Parts that meet
your requirements by redeclaring the defined _for attribute inherited from Definition.

40

The overall basic structure of the SCM, has now expanded the item side of the architecture as
shown below in Figure 19.

shape_representation

rep_2
rep_1

representation_relationship

RT item_2
RT item_1

(ABS)
part_relationship

representations S[0:?]
(ABS)

manufacturing_definition

items S[1:?]

representation

representations S[0:?] (ABS)
design_definition

definition_2
definition_1

definition_relationship

surfacegeometric_representation_item

assembly
(ABS)
part

item_2
item_1 (ABS)

item_relationship

relationships S[0:?]

items S[0:?]

(ABS)
item_structure

ship

ship_context

version_id

defined_for
(INV) definitions S[0:?] S[1:?]

id
(ABS)

definition

id

(ABS)
definable_object

(ABS)
item

(ABS)
system

identifier

representation_item

Figur
e 18: SCM Framework + Domin Models

5.5.6 Connectivity(Needs Review)

The Connectivity domain model is a reusable structure able to be specialised to suit the physical
connections of the shipbuilding AP’s. The basic structure is that of a relation (connection) which

Figure 17: Creating a new Product Structure for an AP

41

relates a number of ports together in a similar way that an arc connects two nodes (see section
5.6.10).

5.5.6.1 Connectivity Basic Model

Connectivity is a primary characteristic of any distribution system. In this section the fundamental
connectivity structure is that of an “interface” connecting two or more “ends” or “ports”. These
ports are defined as potential connecting locations for a type of Item, as depicted in Figure 19. Us-

ing this basic model, the reader will observe that a network or graph can be easily represented.

From the basic connection concept, two specialised interpretations can be produced. These are the
“interface” and the “interconnection”, defined respectively in sections 5.5.6.3 and 5.5.6.4, below.

5.5.6.2 Ports

A Port is a possible connection location for the item with which it is associated. Piping ports are
further classified by type (e.g. “flanged”) such that connection type compatibility can be checked,
along with checks for size and orientation compatibility.

Orientation

Port

Figure 20: Ports

5.5.6.3 Distribution Interfaces

A Distribution_interface is a connection between two or more ports that are distribution_ends. It is
a type of connection that joins two or more ports that are potential connection locations of different
items. A Distribution_interface is a logical connection that has no shape or shape properties such as
length.

EXAMPLE 1 - The joining of two flanged pipe ports, each belonging to a separate pipe flange, is
an example of a Distribution_interface (that is, additionally, a pipe_joint). The Distribu-
tion_interface is the primary mechanism by which different items in a distribution system are con-
nected into a distribution system.

Connects S[1:?]
Connection Port Item

May_connect_a

S[1:?]S[2:?]

Figure 19: Basic Connectivity Model

42

HVAC Segment

 Pipe run

Electrical Circut

Pipe_joint

Ports

HVAC_joint Electrical_connection

Figure 21: Distributions Interconnections & Interfaces

5.5.6.4 Distribution Interconnections

A Distribution_interconnection is an item whose role in a distribution system is to provide connec-
tivity between two or more geographically separated other items. In contrast to a Distribu-
tion_interface, a Distribution_interconnection has shape and shape properties, and may have a sub-
product structure, i.e. it may contain parts or other Distribution_interconnections. The concept of a
Distribution_interconnection can then be specialised depending upon the domain. For example,
within Ship Piping, Distribution_interconnection specialised in two ways; e.g. the Pipeline and
Pipe_run. Figure 21 depicts examples of both Distribution_interfaces and Distribu-
tion_interconnnections in the different distribution system type domains.

5.6 Common Utilities

5.6.1 Ship General Characteristics

Concepts for general characteristics to be used within any Ship AP are provided by the following
Building Blocks:

• designation_characteristics

• dimension_characteristics

General characteristics properties constitutes the basic information regarding details of the ship’s
dimension and identification. This information is independent of any geometric context. It includes
scalar values and identification labels for principal dimensions of a ship, designation information
for ship related companies, as well as class notation and references to relevant rules and regulations.
If this information is not totally consistent with that which can be derived from the ship’s geometric
representation, then the latter, i.e. the geometrically derived information that shall have precedence.

43

While designation_characteristics BB contains the data definitions about the ship based from the
owners, the yards and the classification societies’ point of view, dimension_characteristics BB pro-
vides principal dimensions as well as class dimensions. Additional entities not related to geometry,
e.g. keel parameters, overall dimensions and propeller parameters are specified in the
moulded_form_characteristics BB, which is currently not part of the Ship Common Model.

The above mentioned BBs contain the following main elements (ordered alphabetically):

• Class_and_statutory_designation,

• Class_notation,

• Owner_designation,

• Regulations,

• Ship_designation,

• Shipyard_designation,

• Class_parameters, and

• Principal_characteristics.

A <Class_and_statutory_designation > is a type of <General_characteristic_definition> that speci-
fies the identification given to the ship by the classification society for the purpose of design, manu-
facture and in service approval.

A <Class_notation> is the collection of classification rules that are being used to assess the design,
manufacture and in service maintenance of the ship.

An <Owner_designation> is a type of <General_characteristic_definition> that specifies the organi-
sations that own, or are involved with managing, the ship.

<Regulation>s provide a set of all international and national regulations as well as standards which
apply to the ship.

Error! No topic specified.
Figure 22 - Designation characteristics BB

<Class_parameters> are a type of <General_characteristic_definition> that specifies the length and
speed of the ship in accordance with Classification Society rules and statutory regulations.

<Principal_characteristics> are a type of <general_characteristics_definition> that describe the main
shape parameters of the hull moulded form. <principal_characteristics> also includes data that is
required in subsequent iterations of the hull development process when one is considering hydro-
statics.

A <Ship_designation> is a type of <general_characteristics_definition> that specifies the identifica-
tion given to the ship in order that it can be categorised by any shipping related organisation.

A <Shipyard_designation> is a type of <General_characteristic_definition> that is the identification
given to the ship by the shipbuilder.

Error! No topic specified.
Figure 23 - Dimension characteristics BB

44

5.6.2 Configuration Management (To be completed)

5.6.3 Location concepts

Within any Ship AP location concepts are required to define the position of a whole ship or any of
it’s components unambiguously in global 3D space. To accomplish this, a number of entities are
provided by the following Building Blocks:

• global_axis_characteristics (See Figure 24),

• local_coordinate_systems,

• local_coordinate_systems_with_station_reference, (See Figure 25 for both) and

• spacing_grids (see Figure 26: Spacing Grids BB.

The most important location concepts are co-ordinate systems and spacing grids. The major differ-
ence between them can be described as follows. Co-ordinate systems are mainly used to specify the
exact location of moulded forms, structural parts, systems, pipes, compartments and spaces etc. di-
rectly in terms of geometry. They can be related to ship-specific positions (stations). Spacing grids
use a ship-specific notation to position, (e.g. structural parts) along the major axes of the ship.

Within the context of Ship APs it seems to be sufficient to only support Cartesian co-ordinate sys-
tems (and of course spacing grids), i.e. systems with three orthogonal, normalised axes forming a
right-handed system. Even if a special application would internally use a non-Cartesian system, e.g.
with skew axes, this information probably does not to be exchanged as this is specific to that appli-
cation.

The above mentioned BBs contain the following main elements (application objects):

• Global_axis_placement,

• Local_co_ordinate_system,

• Local_co_ordinate_system_with_station_reference,

• Station_reference,

• Location_reference,

• Spacing_position,

• Longitudinal_position,

• Spacing_table, and

• Spacing_grid_definition,

- which are explained in more detail below.

Any coordinate system is either a <Global_axis_placement> or a <local_coordinate_system>. Geo-
metric data can be specified in terms of either one or the other.

A <global_axis_placement> is a type of <general_characteristics_definition> that defines a fixed
system of right handed orthogonal axes to which geometric data are referred. A
<global_axis_placement> shall have a:

- positive z axis in an upwards direction starting from the base of the ship,

45

- positive x axis running along the ship on the intersection of the centerline with the base
and is in one case directed from the after part of the ship to the forward part of the ship or in
the other case is directed from the forward part of the ship to the aft part of the ship,

- origin of the global axis placement can be any point on the x axis.

The distance of the after perpendicular from the origin and the orientation of the x axis shall be
specified.

 If any other system of axes is used, local or global, then the transformation relations between it and
the <global_axis_placement> shall be specified.

after_perpendicular_offset

orientation

(ABS)
general_characteristics_definition

global_axis_placement

length_measure

global_coordinate_system_orientation

Figure 24: Global_axis_characteristics BB

A <local_coordinate_system> is a type of <Definition>, which means, e.g. that a versioning mecha-
nism is applicable. It is characterised by an origin and the location of it’s 3 axes. An arbitrary num-
ber of <local_coordinate_system>s may exist. Each <local_coordinate_system> has a parent sys-
tem, which is either a <local_coordinate_system> again or a <Global_axis_placement>. Conse-
quently, all coordinate systems within a model are structured in a hierarchy. The common root ele-
ment of this hierarchy is a unique <Global_axis_placement>. Therefore geometry data defined in
any <local_coordinate_system> can be transformed into co-ordinates of the
<Global_axis_placement>.

46

(DER) origin

station_ref_w
station_ref_v

offset

(ABS)
station_referencestation_ref_u

location_referencelocation

local_co_ordinate_system_with_station_reference

point

(DER) local_w
local_v

REAL
direction_ratios L[2:3]

directionlocal_u

w
v

u

parent

(ABS)
definition

local_co_ordinate_system

co_ordinate_system

length_measure

Figure 25: Local_co_ordinate_systems and Local _co_ordinate_system_with_station_reference BBs

A <Local_coordinate_system_with_station_reference> is a special <local_coordinate_system>, that
allows for additional references to longitudinal, vertical or transverse stations. A
<station_reference> is a particular entity, mainly used for this purpose. It also holds the information
required to subdivide any axis into intervals which can be used as a reference basis for points in the
axis system.

<Spacing_position>s may be defined for any of the three global co-ordinate system axes of the ship.
It is used as a reference point during the design and manufacture of the ship and characterised by
name, position and location.

Error! No topic specified.

Figure 26: Spacing Grids BB

A <Longitudinal_position> is a type of <Spacing_position> that specifies a location on the x-axis of
the ship coordinate system. A <Longitudinal_position> may be defined by an offset distance from
an given <Spacing_position>.

A <Spacing_table> is a collection of <Spacing_position>s that define a list of reference points
along one of the coordinate axes of the ship. Any <Spacing_table> has a certain table_usage de-
scribing it’s function within the context of the design and manufacture of a ship. Possible values for
this usage are vertical_table, frame_table, waterline_table, etc.. Additional attributes are the name
and a textual description what is the intended purpose of this <Spacing_table> .

Example: A frame spacing table is a special <Spacing_table>. The frame numbers would be speci-
fied as table_positions and the fact that the table was a frame spacing table would be given by the
value for table_usage.

47

A <Spacing_table> may be created standalone or it may be referred to by a
<Spacing_grid_definition>. The latter is a type of <General_characteristics_definition >. It de-
scribes the set of longitudinal, transverse and vertical <Spacing_table>s that are applicable to the
ship. There is only one <Spacing_grid_definition> defined for a ship.

5.6.4 Basic Geometry

 This section introduces three Building Blocks, moulded_form_points, moulded_form_lines and
moulded_form_surfaces. These provide the basic ship geometrical concepts, <ship_point>,
<ship_curve> & <ship_surface> respectively, which should be used in the shipbuilding AP’s. It is
intended that these BB’s;

• moulded_form_points (<ship_point>),

• moulded_form_lines (<ship_curve>) &

• moulded_form_surfaces (<ship_surface>),

- should be used in preference to those of the generic resources12.

All three Building Blocks have the same structure, but with different contents, see Figure 27. The
intention of these Building Blocks is to extend the geometric resources from Part 42 with additional
generic or shipbuilding specific information.

Example:

A b-spline curve, which can be any 2D or 3D curve, has no information about the context in which
it will be used. If there is additional information related to this b-spline curve, for instance that this
<curve> is a waterline, then this information implies that it is a 2D curve in x/y plane and used in a
shipbuilding context. This information can be used by processors to derive additional information or
for further constraints.

12 Such as <point>, <line> & <surface>

48

representation_item

geometric_representation_item

point curve surface

ship_point ship_curve ship_surfacecartesian_point bounded_curve bounded_surface

b_spline_curve b_spline_surface

ship_point_class_name

ship_curve_class_name

ship_surface_class_name

point_class

curve_class

surface_class

point_shape curve_shape surface_shape
1 1 1

side_condition_type

side_condition

Figure 27: EXPRESS G of the Building Blocks moulded_form_points, moulded_form_lines and
moulded_form_surfaces.

5.6.4.1 Moulded_form_points

The moulded_form_points Building Block introduces the Entity <ship_point>, which is a <point>
in a specific context. The <ship_point> has two attributes, point_class and point_shape and is a
Subtype of <point>, a Part 42 geometric resource.

<Point> is the supertype of all other geometric <point>s like <cartesian_point>, <point_on_curve>,
<point_on_surface>. <Point> itself is a subtype of <geometric_representation_item> which is a
subtype of <representation_item>. Because of the implicit declaration in the Cookbook, which is
relevant for all shipbuilding AP’s, (i.e. all subtypes are ONEOF by default), e.g there is no complex
instance between a <ship_point> and any other geometric subtype of <point> like <cartesian_point>
allowed to cover the geometric information for the <ship_point>.

Instead, the geometry of the <ship_point> will be covered by the attribute point_shape, which is
related to <point>. A Where rule specifies, that no <ship_point> can be instantiated by itself
through point_shape, i.e. no circularity is allowed.

The context of the <ship_point> is defined by the attribute point_class.

The following ship_point_class_names are supported:

− ordinary is a point of discontinuous tangency for one or more curves that pass through it.

− tangent is a point such that curves passing through it have a specified tangent.

− knuckle is a point that has no tangency information.

− unspecified is a point such that no tangency information is known or recorded.

Example: a <ship_point> which is a knuckle point can have the following attributes:

49

− ship_point_class_name knuckle

− point_shape is <cartesian_point> or any other geometric subtype of <point>

5.6.4.2 Moulded_form_lines

The moulded_form_lines Building Block introduces the Entity <ship_curve>, which is a curve in a
specific context. The <ship_curve> has two attributes, curve_class and curve_shape and is a Sub-
type of curve, a Part 42 geometric resource.

Curve is the supertype of all other geometric curves like polyline, circle and b_spline_curve. Curve
itself is a subtype of geometric_representation_item which is a subtype of representation_item. All
subtypes of curve are ONEOF which means there cannot be a complex instance between a
<ship_curve> and any other geometric subtype of curve like b_spline_curve to cover the geometric
information of the <ship_curve>.

Instead the geometry of the <ship_curve> will be covered by the attribute curve_shape, which is
related to curve. A Where rule specifies, that no <ship_curve> can be instantiated by itself through
curve_shape.

The context of the <ship_curve> is defined by the attribute curve_class.

The following ship_curve_class_names are supported:

− buttock_line is a curve that is the intersection of a longitudinal plane with a hull moulded form.

− centreline_profile is a curve that is the intersection of the centreplane with the hull moulded
form.

− deck_line is a curve lying on the moulded surface of a deck.

− flat_of_bottom is the boundary curve of the planar surface at the base of a ship.

− flat_of_side is the boundary curve of the planar surface at the outer most port or starboard side
of a ship.

− intersection_line is a curve that is the intersection of two surfaces found on or within a moulded
form.

− knuckle_line is a continuous boundary between two moulded form surfaces that has discontinu-
ity in tangency across it. A knuckle line may pass through a number of knuckle points.

− tangent_line is a continuous boundary between two moulded form surfaces that has a specified
tangent across it. A tangent line may pass through a number of tangent points.

− transverse_section is a curve that is the intersection of a plane that is parallel to the transverse
axis with a moulded form.

− waterline is a curve that is the intersection of the water plane with a ship moulded form.

− unspecified is a curve whose relation to naval architecture is not known or not recorded

Example: a <ship_curve> which is a waterline can have the following attributes:

50

− ship_curve_class_name waterline

− curve_shape is b_spline_curve or any other geometric subtype of curve

5.6.4.3 Moulded_form_surfaces

The moulded_form_surfaces Building Block introduces the Entity <ship_surface>, which is a sur-
face in a specific context. The <ship_surface> has two attributes, surface_class and surface_shape
and is a Subtype of surface, a Part 42 geometric resource.

Surface is the supertype of all other geometric surfaces like plane, cylindrical_surface and
b_spline_surface. Surface itself is a subtype of geometric_representation_item which is a subtype of
representation_item. All subtypes of surface are ONEOF which means there cannot be a complex
instance between a <ship_surface> and any other geometric subtype of surface like
b_spline_surface to cover the geometric information of the <ship_surface>.

Instead the geometry of the <ship_surface> will be covered by the attribute surface_shape, which is
related to surface. A Where rule specifies, that no <ship_surface> can be instantiated by itself
through surface_shape.

The context of the <ship_surface> is defined by the attribute surface_class.

The following ship_surface_class_names are supported:

− external_surface is a surface that is, or forms part of, the hull moulded form.

− internal_surface is a surface that is, or forms part of, a structural element other than the hull
moulded form, hull inlet or hull appendage

Example: a <ship_surface> which is an external_surface can have the following attributes:

− ship_surface_class_name external_surface

− surface_shape is b_spline_surface or any other geometric subtype of surface

5.6.4.4 Usage Guidance

This section concentrates upon how to use Building Blocks moulded_form_points,
moulded_form_lines and moulded_form_surfaces in other AP’s.

It is the intention of the three Building Blocks moulded_form_points, moulded_form_lines and
moulded_form_surfaces that they will be used in the shipbuilding AP’s in preference to the generic
resources.

The Building Blocks were originally defined for the usage in AP 216 ship moulded forms. That
means that the Enumeration lists of ship_point_class_name, ship_curve_class_name and
ship_surface_class_name meet the requirements of AP 216. It is very likely, however that there are
other types of <ship_point>s, <ship_curve>s or <ship_surface>s necessary for the different ship-
building AP’s. The Enumeration lists have to be checked by every shipbuilding AP. If there is a
new type of <ship_point>, <ship_curve> or <ship_surface> necessary, then the Enumeration list
will be extended with this new type. To include this new type, a textual definition together with the
name of the type has to be delivered. Each AP has to describe at least its own Subset of items in the
enumeration lists, which is allowed for the data exchange.

51

<ship_point>s, <ship_curve>s or <ship_surface>s can be used by other AP’s in any representation
by redefining the attribute items of these entities. More useful is the definition of Where rules,
which restrict the attribute items that it points to <ship_point>s, <ship_curve>s or <ship_surface>s.
The attribute items will be inherited by any representation Subtype from the Supertype representa-
tion, which is part of the common model.

For instance in the offset table, wireframe or surface representations <ship_point>s, <ship_curve>s
or <ship_surface>s can be used instead of the part 42 geometric resources.

Example: surface representation of the flat bottom using the Building Blocks moulded_form_points,
moulded_form_lines and moulded_form_surfaces;

1. flat of bottom is a moulded_form which has a moulded_form_representation

2. the moulded_form_representation is a face_based_surface_model

3. the surface model consists of a connected_face_set with a single topological surface which is a
face

4. the face_geometry of the face_surface is a <ship_surface>

5. the <ship_surface> has two attributes
- surface_shape is a plane
- surface_class is external_surface

6. the boundary of the face is an edge_loop consisting of one oriented_edge with one edge_curve

7. the geometry of the edge_curve is a <ship_curve>

8. the <ship_curve> has two attributes
- curve_shape is a polyline
- curve_class is flat_of_bottom

9. vertex1 and vertex2 are vertex_points with the vertex_geometry <ship_point>

10. the <ship_point> has two attributes
- point_shape is a <cartesian_point>
- point_class is ordinary

5.6.5 Ships

• Ship itself is required since all data defining the product needs to be related to ship, which might
exist in any life cycle stages (ships); it describes a ship as the naval architectural object in con-
cern.

All data defining the product are somehow to be related to a ship, which might exist in any life cy-
cle stage. A project, which represents a ship in the early design phase, for example before contract,
is also regarded as a ship.

Error! No topic specified.
Figure 28 - Ships BB

52

5.6.6 Features(Needs input)

5.6.7 Materials (Needs Review)

This section introduces the Materials BB. The entities declared in this schema are used to specify a
raw material by it’s physical properties, not by the name it is sold under. This specifies the mate-
rial’s physical properties so that there is no dependence upon trade names for materials which may
changes over time and from region to region.

The <ship_material>s can have a <description>, a <density_measure> and a <material_reference>
defined externally. <ship_materials> are subdivided into <homogeneous_ship_material>s (with a
number of physical properties) and <composite_ship_material>s which may consist of other
<ship_material>s.

thermal_expansion_coefficient

stress_of_fracture

yield_point

poisson_ratio

youngs_module

homogeneous_ship_material composite_ship_material

density

description

material_reference

external_reference
documentation S[0:?]

name

(ABS)
item

(ABS)
part

RT defined_for S[1:?]

(ABS)
definition

ship_material

ratio_measure

label

dilatation_measure

stress_measure

density_measure

Figure 29: Materials BB

5.6.8 Units(Needs review)

• ship’s units supported by the measures BB. <Measures> includes all resources that are required
for representing measures for physical quantities. The following concepts are in scope:

 - global representation of units;

 - SI units;

 - derived units (such as for speed);

 - conversion based units (such as inch and foot);

 - all measures and units needed for all the ship APs.

The distinction between si_unit and conversion_based_unit is made by using the ANDOR relation-
ship of the named_unit subtypes.

EXAMPLE:

 A <length_measure> is ISO conformant if its unit is both a <length_unit> and a <si_unit>; it is a
non-standard unit if it is both a <length_unit> and a <conversion_based_unit>.

END_EXAMPLE

53

This BB should be used by all shipbuilding APs. The concepts are taken from the IS-version of ISO
10303-41.

There are some minor changes compared to the Part 41 resources, such as

 - to include new subtypes into the ONEOF clauses of existing supertypes;

 - to include new types into existing select-types (measure_value);

 - to include some additional WHERE-rules;

 - to include type positive_number, percentage, force,

 pressure, stress, moment, inertia, dilatation;

 - to reference <unit> from the ship (=> no

 global_unit_assignment).

These lead to the creation of extended_... entities and to fewer imports from P41.

ratio_measure_with_unit

volume_measure_with_unit

area_measure_with_unit
solid_angle_measure_with_unit

plane_angle_measure_with_unit

luminous_intensity_measure_with_unit

amount_of_substance_measure_with_unitthermodynamic_temperature_measure_with_unit

electric_current_measure_with_unit

time_measure_with_unit

mass_measure_with_unit

length_measure_with_unit

ratio_unit

volume_unit

area_unit

solid_angle_unit

plane_angle_unit
luminous_intensity_unit

amount_of_substance_unit

thermodynamic_temperature_unit

electric_current_unit

time_unit

mass_unit

length_unit
context_dependent_unit

unit_component

measure_with_unit

conversion_factorconversion_based_unit

(DER) RT dimensions

nameprefix

si_unit

si_prefix

si_unit_name

REAL
exponent

unit

derived_unit_elementelements S[1:?]

derived_unit

REAL
luminous_intensity_exponent

REAL
amount_of_substance_exponent

REAL
thermodynamic_temperature_exponent

REAL
electric_current_exponent

REAL
time_exponent

REAL
mass_exponent

REAL
length_exponent

dimensional_exponents

dimensions

named_unit
unit

Figure 30: Measures BB

5.6.9 Externally Defined References(Needs completing)

This section is only partially complete. It introduces two utilities, that use similar terminology, but
are otherwise quite distinct. Firstly, <External_reference>s are introduced, followed by
<External_instance_reference>s.

54

5.6.9.1 External References

This section introduces the External_references Building Block which contains the entities to repre-
sent an <external_reference>. An <external_reference> is the abstract notion of a data source exter-
nal to the data set where an instance of this entity exists.

 EXAMPLE: a WWW uniform resource locator denotes such a data source

 END_EXAMPLE

The information associated with an <external_reference> includes; a <location> and a
<description>.

n the <location> provides a reference to the address where the source of the data can be found,
such as an <address> whether postal or electronic.

n the <description> provides a textual note about the reference.

See Figure 5: Global_id & External References within the SCM below.

version_id

id

relationships S[0:?]

items S[0:?]

(ABS)
item_structure

contxt

item_2item_1 (ABS)
item_relationship

ship_context

location

external_reference

documentation S[0:?]

name

STRING

local_id

STRING

company_id

global_id

id

ship

(ABS)
item

(ABS)
definable_object

defined_for
(INV) definitions S[0:?] S[1:?]

RT defined_for S[1:?]

(ABS)
general_characteristics_definition

name

representation

representations S[0:?]

(ABS)
design_definition

(ABS)
definition

location
INTEGERport

identifier

machine_adress

other_protocol_type

protocol_type

protocol
universal_resource_locator

telex_number

electronic_mail_address

telephone_number

facsimile_number

country

postal_code
region

town

postal_box
street

street_number

label

internal_location

address

any_address

Figure 31: Global_id & External References in SCM

5.6.9.2 External Instance References

This section is incomplete but introduces the need for <external_instance_reference>s within the
External_references Building Block and revisits the Definitions Building Block regarding the need
for a <Global_id>.

<External_instance_reference>s provide the capability to refer to something outside a given data
exchange or, in the data sharing context, to be able to reference instances of other models. In this

55

sense the notion of external instance referencing is similar to that of PLIB, and this issue is the con-
cern of on-going work in the shipbuilding group.

External instance references are required for Shipbuilding APs for a number of reasons as explained
within the modelling guidelines in section 4.9.1. For example, when needing to; preserve relation-
ships between instances across different ISO APs; to preserve relationships between instances in the
same ISO AP during partial transfers; to preserve the identity of instances which are transferred in
multiple exchanges; to preserve the identity of entities during joint engineering tasks; or to preserve
the identity of entities during concurrent engineering tasks.

Appendix A describes the current proposals for this facility, but as explained later, the exact format
has still to be resolved. However, some issues13 are still under discussion that will need to be re-
flected in this document.

Version information also is required in order to maintain consistency between transfers and envi-
ronments. For example, a plate may reference a moulded form, but requires only the underlying
surface geometry. If a reference to the moulded form is used then the referencing AP must use the
moulded form schema to find the surface, i.e. the moulded form schema must be loaded and ac-
cessed. However, a direct reference to the surface would cause problems if the moulded form defi-
nition later referred to a different surface.

Only entity types which carry version information should be candidates for instance references.
This includes all subtypes of “Definition”, and “Definable_object” (to capture item_structures and
item_relationships).

Within the Definitions Building Block, a global unique identifier (Global_id) can be used to iden-
tify a unique version of a definition. Hence, a Global_id must be assigned when a new version of a
definition is created. This permits concurrent updates to the same definition at several sites and can
be seen in Figure 5: Global_id & External References within the SCM.

5.6.10 The Graphs Concept

This section has been included under the heading of utilities as many of the entities in the ship
product model were based on graph or topological theory. This schema has since been dropped by
the group, but the concepts behind the theory are still relevant and can be reused. The graph theory
defines a set of relationships among objects.

Originally the graph constructs were collected in a Building Block of its own called graphs, but this
approach, however, was considered too academic for use in the Application Reference Models and
a decision was made to provide a description on how the concepts of the graphs could be used inde-
pendently. The original graphs BB is listed at the end of this document, for reference purposes,
within Appendix B.

The entities composing the former graphs BB would normally have been sub-typed for the new en-
tities to inherit the attributes of the particular graph entity (& it’s parent entities). These former
subtypes of the graph constructs now only show this historical fact in either comment notes or
implicitly in the structure of the WHERE rules.

The basic concept is that of the <graph> entity which collects together a group of entities (such as
<node>s), and a set of relationships <arc>s that describe which <node>s are related. It is in this
sense that the topology or the arrangement of the <node>s can be described. The only constraints on

13 (However, for a summary of the issues relating to this, see the minutes from the ISO Shipbuilding meeting held in San Diego, 1997, and also
Annex G covering this topic).

56

this entity are that those <node>s in the set of <arc>s must also be in the set of <node>s. This means
that there may be a <node> in the set of <node>s that is not referred to in the set of <arc>s. How-
ever, every <node> referred to in the set of <arc>s must be present in the set of <node>s. Of note, is
that the order of the <node>s in an <arc> are not directed; i.e. the order of the <node>s representing
node_1 & node_2 are not constrained.

(DER) unconnected_nodes S[0:?]

(ABS)
tree

(DER) entry_node

node_2

node_1

(DER) end_node

(DER) start_node

(ABS)
directed_

arc

(ABS)
arc

arcs S[0:?]

RT arcs S[0:?] (ABS)
directed_graph

(ABS)
single_entry_directed_graph

(ABS)
single_entry_directed_acyclic_graph

(ABS)
acyclic_graph

(ABS)
connected_graph

(ABS)
graph

nodes
(INV) member_in_graphs S[0:?] S[0:?]

(ABS)
node

(ABS)
topology

Figure 32: Graphs Building Block

ENTITY Topology
 ABSTRACT SUPERTYPE;

-- <Topology> collects all major concepts of this schema.
 END_ENTITY;

ENTITY Graph
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Topology);
 -- A <Graph> is defined as a related set of nodes and arcs. The
 -- following rules and constraints apply:
 -- 1. All nodes of the <Arc>s have to be nodes in <Node>s.
 -- 2. There may be nodes in <Node>s, which are not referred
 -- to by any arc in the set of <Arc>s.
 nodes: SET OF Node;
 arcs: SET OF Arc;
 DERIVE
 unconnected_nodes: SET OF Node := find_unconnected_node(nodes,arcs);
 -- the nodes which are not referred to in any arc in the set of
 -- <Arc>s.
 WHERE
 no_lost_arc_nodes: graph_condition_on_nodes(nodes, arcs);

57

 -- all nodes of the <Arc>s have to be nodes in <Node>s.
 END_ENTITY;

ENTITY Node
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Topology);

-- <Node> is a node in a graph.
-- All application related entities which take part in
-- relationships using the graph resource shall be a specialisation
-- of this entity.

 INVERSE
 member_in_graphs : SET [0:?] OF graph FOR nodes;

-- upward pointer for traversal of graphs.
 END_ENTITY;

 ENTITY Arc
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Topology);
 -- An <Arc> represents a relationship between two <Node>s, without
 -- specifying the principal type of the relationship.
 --
 -- Application related entities which model a relationship between
 -- entities using the graph resource have to be declared SUBTYPE of
 -- this entity or any of its subtypes.
 node_1: Node;
 -- one node in the relationship, not necessarily the "first" or
 -- "primary" or "parent".
 node_2: Node;
 -- the other node in the relationship, not necessarily the
 -- "second" or "secondary" or "child".
 END_ENTITY;

By creating sub-types of graph, tighter and more restrictive relations can be defined. So for exam-
ple, we might want to enforce the ordering of the information in the <arc>s to state that the parent
should always be represented by the first node and the child by the second. This would be done by
sub-typing graph (see directed_graph) and enforcing the <arc>s to be of type <directed_arc>, where
the order of the <node>s is constrained.

ENTITY Directed_graph
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Graph);
 -- A <Directed_graph> is a <Graph> where all arcs are directed.
 SELF\Graph.arcs : SET OF Directed_arc;
 -- all arcs of this graph shall be directed.
 END_ENTITY;

ENTITY Directed_arc
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Arc);
 -- A <Directed_arc> represents a relationship between two <Node>s,
 -- in which case one node is viewed at as being the "first" or
 -- "primary" or "parent" node, the other node is by definition the
 -- "second" or "secondary" or "child" node.
 DERIVE
 start_node: Node := SELF\Arc.node_1;
 -- the "first" or "primary" or "parent" node.
 end_node: Node := SELF\Arc.node_2;
 -- the "second" or "secondary" or "child" node.
 END_ENTITY;

Likewise, we might want to enforce the explicit description of each child’s father and mother. In
this case we must make it explicit that the father is a parent of the child (which was implicit in the
previous example) followed by explicitly defining the mother. In this case all of the family mem-
bers would be <node>s and the <arc>s would indicate that there was a relationship between both the
father & the child and another relationship between the mother and the child. That is, two <arc>s
would be needed to define a) the father-child relationship & a second b) the mother- child relation.
In this sense the two <arc>s can then be considered to be “connected” by the fact that the child is
acts as a common link between the two. The mother & father may also be the parent of another

58

child, perhaps with a different partner, which would extend the length of the “connection” across a
number of families. See the definition of a <connected_graph>.

ENTITY Connected_graph
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Graph);
 -- A <Connected_graph> is a <Graph> where the following
 -- constraints apply:
 -- 1. all arcs have to be connected to form one single structure.
 -- 2. the set of unconnected nodes shall be empty.
 WHERE
 is_connected: graph_is_connected(SELF\Graph.arcs);
 -- all arcs have to be connected to form one single structure.
 no_lost_nodes: SIZEOF(SELF\Graph.unconnected_nodes) = 0;
 -- the set of unconnected nodes shall be empty.
 END_ENTITY;

With a <connected_graph> described above, it would be possible to see that the “connection” de-
scribed could continue to grow (as more & more partners are added to the list) until a partner
eventually links with the original parent and effectively “closes the loop”.

This could be similar to a situation where (in ship building terms), we wanted to relate steel plates
of a panel together. Each plate (or <node>) is related to another through a weld (perhaps a subtype
of <arc>). The plates are connected because each weld (or arc) is common to two plates, and be-
cause each plate has a number of welds, it can be connected to a number of other plates. However, if
we imagine that plates are being welded together around a sphere, sooner or later, the original plate
will be welded to the plate leading the others around the sphere. In this sense, the <graph> of the
plates would be cyclical.

[Add Figure to explain]

In certain situations this might not be desirable, hence the <acyclic_graph> below, restricts this
through a WHERE rule.

ENTITY Acyclic_graph
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Connected_graph);
 -- An <Acyclic_graph> is a <Connected_graph> with NO cycles.
 WHERE
 no_cycles: TRUE;
 -- graph_has_no_cycles(SELF\arcs);
 -- this graph shall be acyclic.
 END_ENTITY;

Returning to the description about directed_graphs, it can also be useful to constrain which of the
<arc>s should be handled first. In a directed graph, each second <node> in one <arc> forms the sec-
ond in the next <arc> to provide the “direction”. By specifying that the first <node> in the <arc> is
not referred to by any other <arc>, then we constrain this <node> to have no other relationships in
the <graph>. This might useful in situations where a single relationship provides the key to all oth-
ers. For example, in genealogy, sometimes only one ancestor is known and acts as the root of the
family tree. In the example below, the WHERE rule checks this condition.

ENTITY Single_entry_directed_graph
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Directed_graph);
 -- A <Single_entry_directed_graph> is a <Directed_graph> which has
 -- exactly one start node referred to by only one arc.
 DERIVE
 entry_node: Node := find_entry_node(SELF)[0];
 WHERE
 entry_node_condition: (SIZEOF(find_entry_node(SELF)) = 1);
 -- this graph shall have exactly one start node referred to by
 -- only one arc.
 END_ENTITY;

This can also be extended towards the <acyclic_graph>, to ensure that there are no cycles elsewhere
within the <graph>.

59

ENTITY Single_entry_directed_acyclic_graph
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Single_entry_directed_graph, Acyclic_graph);
 -- A <Single_entry_directed_acyclic_graph> is a
 -- <Directed_acyclic_graph> which has exactly one start node
 -- referred to by only one arc.
 END_ENTITY;

Extending the idea of the family still further, the family tree can also be represented by a
<single_entry_directed_acyclic_graph> with a corresponding WHERE rules to check that (in the
family sense), a child can only have one father, and likewise, the child can have only one mother.

 ENTITY Tree
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Single_entry_directed_acyclic_graph);
 -- A <tree> is a <single_entry_directed_acyclic_graph> where no two
 -- arcs end at the same node.
 WHERE
 is_tree: TRUE;
 END_ENTITY;

5.6.10.1 Using the Graph Concept

As well as defining the constraints shown in the <graph>s BB, through the use of WHERE rules
within shipbuilding entities, the supporting FUNCTIONs are also needed. The negative side to this
approach is that there is a risk that similar functions are defined for use in the different BB’s,
thereby trading greater clarity for a little redundancy in places.

However, we can see that by subtyping and constraining the basic <graph> definitions, more and
more complex relationships can be represented. In the shipbuilding area, it is these rules that restrict
the relationships between the various systems, entities of the framework and ultimately between the
different ship parts, and can be used across many different domains within and outside shipbuilding.
The graph schema and its concepts are used in the Ship Common Model already and serve to dem-
onstrate the principles behind the use of topology.

6. QUALITY ASSURANCE

The following table states a minimum set of requirements to be matched by a Building Block ready
for publication through the Building Block e-mail server. The criteria are ordered from the more
vague and difficult to check to the more concrete and easy to check requirements.

Topic Quality Target Approach

Content of comments understandability a comment shall support together with the formal model
constructs the understanding of the model concept. Con-
struct and comment together shall facilitate the under-
standing and evaluation by a person not involved in the
model development.

See also section 4.4.6

Expressiveness of
names

understandability check if name chosen is meaningful with respect to the
model intent

OPTIONAL attributes consistency, clear model intent
when used

see this document

EXPORT and
IMPORT lists

leanness – avoid unnecessary
imports and exports

check if an exported item is a potential candidate as a
resource to be used elsewhere in the Building Block
world. Check if each imported item is actually used in
the model schema

60

Form of comments compliance with commenting
guidelines

see section 4.4

Form of entity and
attribute names

compliance with naming re-
strictions

see section 4.4.5

Cardinality constraints compliance with guidelines see section 4.7

Use of ANDOR no usage (neither implicitly
nor explicitly) of the ANDOR
or AND construct.

see section 4.5

EXPRESS-G completeness an EXPRESS-G diagram shall be present in the Building
Block e-mail server

Form of Building
Block

consistency The Building Block shall conform to the form described
in section 3.1.1

Syntax correct EXPRESS IS syntax parsing without errors

Table 1: Building Block requirements.

7. LIBRARY MAINTENANCE OF BUILDING BLOCKS AND ISSUES

There exists an automated storage and distribution mechanism for Building Blocks, issues and other
types of data relevant for concurrent model development (the Building Block e-mail server). In or-
der to ensure consistency and overall availability of these items, the server shall be used for their
publication throughout the development process.

A current version of the usage guidelines for the server can be obtained by mailing
emsa@sdg.lr.org stating help in the subject line.

The maintainer of the server is Tim Turner from LR in London, e-mail: tcstjt@aie.lreg.co.uk or tel:
+44 181 423 2407

8. ISSUES

Current issues include:

1 Format of Global_id - is this sufficient for general use? (PLIB format should perhaps be used for later
consistency).

2 Are any changes required to version history (maybe)
4 Should simple_version be retained (no)
5 Conformance class - how do we ensure conformance in an AP where external references are used to

refer to definitions in other AP’s ? (documentation)
6 Perhaps conformance classes are needed across AP’s - therefore, we may need input from WG10?

(Jochen)
7 Should the format of the GUID indicate whether referring to definition or definable_object?
8 If separate GUIDs are required, should we use the 2 attributes from the PLIB format?

9. BIBLIOGRAPHY

[N327] Koch Th., de Bruijn W.: ISO TC183/SC4/WG3 document N327 – Modelling Framework
for Shipbuilding.

[AP Guidelines] Guidelines for the development and approval of STEP Application Protocols; ver-
sion 1.2; ISO TC 184/SC4/WG4/ N506, May 5, 1995.

[LR12ADP] Turner, J.: STEP AEC Shipbuilding, AP Cross Reference List, October 17th 1997

61

[Common AAM] Kendall, J: ISO TC 184/SC4/WG3 N511 - Shipbuilding Common Activity
Model, dated 14 January 1996.

[SCM-97] Turner, T: Ship Common Model, dated Version dated 30 July, 1997.

[Guidelines-96] Haenisch,J: ISO TC184/SC4/WG3/N498 - AP Development Guidelines for Ship-
building, dated 17/07/96

62

10. APPENDIX A: CURRENT PROPOSALS FOR EXTERNAL INSTANCE REFERENCING

The EXPRESS-G diagram, together with the definitions below make up the current proposed during
the San Diego (ISO) meeting June 1997.

instanceins tance

(ABS) Item

Assembly

Item_for_assembly

Part System

External_part External_sys tem

Structural_part Structural_part

External_ins tance_
reference

schema_name
entity_name

attribute_name

attribute_value

ins tance_context_
identifier

Figure 33: External References

The overall modifications required are now outlined below;

• the Generic_product_structures Building Block, the Definable_object entity needs to be re-
modelled with external_reference properties/entity.

• the Definitions Building Block the entity definition should be modified as follows:

ENTITY Definition

ABSTRACT SUPERTYPE;

defined_for: SET [1:?] OF Item;

local_units: SET OF Unit;

version_id: OPTIONAL Label;

GUID: Global_id; (*A persistent, global identifier which uniquely identifies the definition. *)

UNIQUE

UR1: version_id, GUID;

END_ENTITY;

The global identifier is modelled as an entity to allow access to the company_id field. The local_id
is assumed to be unique within the company across all sites and projects.

ENTITY Global_id;

(* A persistent, global identifier which uniquely identifies the definition. *)

company_id: STRING (4) FIXED;

63

(* A unique identifier for the company which created the data. The string is
left justified and blank filled. *)
local_id: STRING(64) FIXED;

(* A persistent identifier which uniquely identifies this definition throughout the company. Assigned at the
time a definition is created. The string is left justified and blank filled. *)

END_ENTITY;

All external instance references will be subtypes of External_Definition_Reference:

ENTITY External_Definition_Reference;

(* A reference to an definition which is external to this transfer *)
schema_name: Label;

(* The name of the schema which contains the definition instance. *)
entity_type: Label;

(* The type of the definition instance. This is a subtype of definition.*)
GUID: Global_id;

(*A persistent, global identifier which uniquely identifies the definition.*)
END_ENTITY;

An Example using AP 215

Assuming that a previous transfer has already taken place & that the relevant GUID is available,
then External instance references could be implemented in AP215 as follows:

TYPE moulded_form_boundary = SELECT

(non_structural_moulded_form_design_definition,

ap216_moulded_form_design_defintion);

END_TYPE;

ENTITY non_structural_moulded_form_design_definition

SUBTYPE OF (Moulded_form_design_definition);

(* a nonstructural moulded form. These are specific to compartmentation. *)

WHERE

(* usage is restricted to non_structural or user_defined *)
WR1: (SELF.usage = moulded_region_usage.non_structural_bulkhead) OR

(SELF.usage = moulded_region_usage.user_defined);

END_ENTITY;

ENTITY ap216_moulded_form_design_defintion

SUBTYPE OF (External_Definition_Reference);

(* a structural moulded form which has been transferred using AP216 *)
WHERE

(* moulded form is from AP216 schema *)
WR1: SELF.schema_name = ‘ap216_maristep’;

(* entity type is moulded_form_design_definition *)
WR2: SELF.entity_type = ‘moulded_form_design_definition’;

END_ENTITY;

64

11. APPENDIX B: THE COMPLETE GRAPHS BUILDING BLOCK

Graphs Building Block
Description:
 The schema graphs serves as a resource for all concepts based on
 dynamic (i.e. not fixed at modelling time) structures. It contains
 the basic element of a graph which is called "node". An "arc" is
 used to express a relationship between two nodes. A "graph" is
 basically a collection of arcs. Different types of graph are
 supplied to represent different types of relationships.

SCHEMA graphs_export;
 USE FROM graphs_model

(Node,
 Arc,
 Graph,
 Directed_arc,
 Single_entry_directed_acyclic_graph,
 Tree);

END_SCHEMA;

SCHEMA graphs_model;

 ENTITY Topology
 ABSTRACT SUPERTYPE;

-- <Topology> collects all major concepts of this schema.
 END_ENTITY;

 ENTITY Node
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Topology);

-- <Node> is a node in a graph.
-- All application related entities which take part in
-- relationships using the graph resource shall be a specialisation
-- of this entity.

 INVERSE
 member_in_graphs : SET [0:?] OF graph FOR nodes;

-- upward pointer for traversal of graphs.
 END_ENTITY;

 ENTITY Arc
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Topology);
 -- An <Arc> represents a relationship between two <Node>s, without
 -- specifying the principal type of the relationship.
 --
 -- Application related entities which model a relationship between
 -- entities using the graph resource have to be declared SUBTYPE of
 -- this entity or any of its subtypes.
 node_1: Node;
 -- one node in the relationship, not necessarily the "first" or
 -- "primary" or "parent".
 node_2: Node;
 -- the other node in the relationship, not necessarily the
 -- "second" or "secondary" or "child".
 END_ENTITY;

 ENTITY Directed_arc
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Arc);
 -- A <Directed_arc> represents a relationship between two <Node>s,
 -- in which case one node is viewed at as being the "first" or
 -- "primary" or "parent" node, the other node is by definition the
 -- "second" or "secondary" or "child" node.
 DERIVE
 start_node: Node := SELF\Arc.node_1;
 -- the "first" or "primary" or "parent" node.
 end_node: Node := SELF\Arc.node_2;
 -- the "second" or "secondary" or "child" node.
 END_ENTITY;

 ENTITY Graph
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Topology);
 -- A <Graph> is defined as a related set of nodes and arcs. The
 -- following rules and constraints apply:

65

 -- 1. All nodes of the <Arc>s have to be nodes in <Node>s.
 -- 2. There may be nodes in <Node>s, which are not referred
 -- to by any arc in the set of <Arc>s.
 nodes: SET OF Node;
 arcs: SET OF Arc;
 DERIVE
 unconnected_nodes: SET OF Node := find_unconnected_node(nodes,arcs);
 -- the nodes which are not referred to in any arc in the set of
 -- <Arc>s.
 WHERE
 no_lost_arc_nodes: graph_condition_on_nodes(nodes, arcs);
 -- all nodes of the <Arc>s have to be nodes in <Node>s.
 END_ENTITY;

 FUNCTION find_unconnected_node(
 nodes: SET OF Node;
 -- the nodes to be checked.
 arcs: SET OF Arc
 -- the arcs to be checked.
) : SET OF Node;
 -- The function <find_unconnected_node> returns the subset of nodes
 -- out of the input set of nodes which are not referred to by any of
 -- the arcs in the input set of arcs.

 RETURN (nodes);
 END_FUNCTION;

 FUNCTION graph_condition_on_nodes(
 nodes: SET OF Node;
 -- the nodes of a graph to be checked.
 arcs: SET OF Arc
 -- the arcs of a graph to be checked. Both arcs and nodes shall
 -- together describe the same graph.
) : BOOLEAN;
 -- The function <graph_condition_on_nodes> returns TRUE if all nodes of
 -- input set of arcs are present in the input set of nodes.

 RETURN(TRUE);
 END_FUNCTION;

 ENTITY Connected_graph
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Graph);
 -- A <Connected_graph> is a <Graph> where the following
 -- constraints apply:
 -- 1. all arcs have to be connected to form one single structure.
 -- 2. the set of unconnected nodes shall be empty.
 WHERE
 is_connected: graph_is_connected(SELF\Graph.arcs);
 -- all arcs have to be connected to form one single structure.
 no_lost_nodes: SIZEOF(SELF\Graph.unconnected_nodes) = 0;
 -- the set of unconnected nodes shall be empty.
 END_ENTITY;

 FUNCTION graph_is_connected(
 arcs: SET OF Arc
 -- the arcs to be checked.
) : BOOLEAN;
 -- The function <graph_is_connected> returns TRUE if the arcs in the input
 -- set of arc form a single "structure".

 RETURN(TRUE);
 -- dummy to stop the compiler complain about a missing return statement

 END_FUNCTION;

 ENTITY Acyclic_graph
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Connected_graph);
 -- An <Acyclic_graph> is a <Connected_graph> with NO cycles.
 WHERE
 no_cycles: TRUE;
 -- graph_has_no_cycles(SELF\arcs);
 -- this graph shall be acyclic.
 END_ENTITY;

 ENTITY Directed_graph
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Graph);
 -- A <Directed_graph> is a <Graph> where all arcs are directed.

66

 SELF\Graph.arcs : SET OF Directed_arc;
 -- all arcs of this graph shall be directed.
 END_ENTITY;

 ENTITY Single_entry_directed_graph
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Directed_graph);
 -- A <Single_entry_directed_graph> is a <Directed_graph> which has
 -- exactly one start node referred to by only one arc.
 DERIVE
 entry_node: Node := find_entry_node(SELF)[0];
 WHERE
 entry_node_condition: (SIZEOF(find_entry_node(SELF)) = 1);
 -- this graph shall have exactly one start node referred to by
 -- only one arc.
 END_ENTITY;

 FUNCTION find_entry_node (
 grph: Graph
 -- the graph to find the entry node of.
) : SET OF Node;
 -- The function <find_entry_node> returns the number of entry
 -- nodes of graph.
 LOCAL
 node_set: SET OF Node;
 END_LOCAL;

 RETURN (node_set);
 -- dummy to stop the compiler complain about a missing return statement
 END_FUNCTION;

 ENTITY Single_entry_directed_acyclic_graph
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Single_entry_directed_graph, Acyclic_graph);
 -- A <Single_entry_directed_acyclic_graph> is a
 -- <Directed_acyclic_graph> which has exactly one start node
 -- referred to by only one arc.
 END_ENTITY;

 ENTITY Tree
 ABSTRACT SUPERTYPE
 SUBTYPE OF (Single_entry_directed_acyclic_graph);
 -- A <tree> is a <single_entry_directed_acyclic_graph> where no two
 -- arcs end at the same node.
 WHERE
 is_tree: TRUE;
 END_ENTITY;

END_SCHEMA; -- graphs_model.

67

12. APPENDIX C: COMMON APPLICATION ACTIVITY MODEL

ISO 10303 is the International Standard for the exchange of Product Model Data (STEP). Its
objective is to produce a mechanism that is capable of describing product data, throughout the
lifecycle of a product, in a form that is unambiguous and independent of any particular software
system or hardware platform.

This appendix presents the Shipbuilding Common Application Activity Model (AAM), with the
accompanying definitions of the terms describing the information exchanged and the titles of the
activities performed. Also included is the node tree that gives an overview of all the pages in the
AAM and their hierarchy.

The Common AAM are the higher levels which are common to all the Shipbuilding APs. Each of
the APs will contain the common AAM and expand the lower levels where necessary.

The AAM is a graphical representation of the activities carried out in a process and the information
flows required between them. The AAM is used to aid identification of these flows of information
and therefore clarify the scope and information requirements of the AP. The modelling of this
AAM is done using the IDEF-0 (ICAM Definition Language 0) notation.

The application activity model (AAM) in this Annex is intended to provide a common basis from
which all of the Shipbuilding Application Protocols can be built and extended according to the indi-
vidual domain requirements. Such AAMs aid in understanding the scope and information require-
ments defined for each Application Protocol. This AAM provides the context of all the Application
Protocols and as such covers activities which go beyond the scope of them individually. The model
is presented as a set of definitions of the activities and the data, and a set of activity figures.

The viewpoint of the application activity model is of an observer of the global ship development
process. This activity model identifies the life cycle activities across all shipbuilding APs with ex-
tensions and emphasis detailed in each AP where appropriate. Activities relevant to the shipbuild-
ing lifecycle that are do not fit with this activity model but are required and are detailed in other
shipbuilding application protocols, should be brought to the attention of the editors of this document
so that this generic model can be amended where relevant.

The following definitions describe the activities, inputs, outputs, controls and modifiers which in-
teract as shown in the forthcoming diagrams.

A.1.1 approved design : The approved design is the final design to be submitted as an offer.

A.1.2 arrangements : The arrangements of the ship are the ship’s compartments and spaces.
Any description of arrangements will include associated definitions of purpose for the compartment
or space.

A.1.3 assemble ship : the activity that assembles the modular units, the serviced parts and ad-
ditional material that result from the production of steel sub-section. The result is an assembled
ship, that still has to be tested.

A.1.4 availability, reliability and maintainability information : The information
about the components that is required to install them in the ship and is required for planned mainte-
nance.

A.1.5 basic hull parameters : Estimated principal dimensions based on historical data or
preliminary design development.

68

A.1.6 budget : the cost constraint on the design building and maintenance of the ship.

A.1.7 calculate cost of ship : This activity describes creation of negotiating documents based
on technical product data and their estimated manufacturing cost. The results of this activity may
contain sale price documents, financing support plan and documents describing funding and possi-
ble loans.

A.1.8 certificates : The certificates issued by the Classification Society on completing the ship.

A.1.9 check design against rules and regulations : This is the top level activity for the
approval of the primary design as part of the approval and certification process. The content of this
activity is the same for all ships when it comes to conformance with Main Class Rules, but varies
when it comes to additional class rules (type of vessel) and register notations. The activities performed
are tailored to the rule requirements for general arrangement and global strength. This part of the
approval is necessary before the yard can start ordering steel.

A.1.10 Classification Society : An organisation that enhances the safety of life and property
at sea by providing rules, regulations and personnel for assessing and classifying ships during their
lifecycle.

A.1.11 complete and approve design of machinery : The selection, arrangement and
approval of the power plant in terms of the main engine, associated propulsion system and its aux-
iliary machinery.

A.1.12 complete and approve design of outfitting and distribution systems : The
selection and approval of the necessary outfitting equipment. The selection is based mainly on for-
mer designs and in accordance with the requirements. It also contains the layout of the different
types of distribution systems such as piping and HVAC.

A.1.13 complete and approve design of ship structure : The completion and approval
of the ship structural design.

A.1.14 complete and approve ship design : The production and approval of ship design
product data, documents and the classification drawings using the preliminary design from the bid
preparation, as well as the required rules and regulations. The result of this activity is the approved
design and the production and delivery schedule.

A.1.15 consultants : Organisations that provide specific services to shipyards, ship owners and
classification societies during the ship lifecycle.

A.1.16 contract : The contract is the output from the activity which involves placing the order
for the ship. The contract is used as a constraint in subsequent activities such as final design and
approval and production.

A.1.17 cost : The calculated cost of the ship based on the cost of material and labour.

A.1.18 create preliminary design : All design activities relevant in a very preliminary stage
of ship design in consideration of classification rules, national/international demands, shipyard
constraints and owner requirements. The aim of this task is to make a shipyard offer.

A.1.19 create preliminary general arrangements : The activity that produces the
preliminary compartmentation plans from the preliminary hull form definition.

A.1.20 create preliminary hull form : The activity that is the first step of designing a ship.
Using parent ships main dimensions and form parameters one or more preliminary hull forms will be
generated.

69

A.1.21 create preliminary machinery design : The activity that produces the preliminary
designs for the ship machinery; including the prime mover, shaft system, fuel system, power
systems and cargo handling equipment.

A.1.22 create preliminary outfitting design : The activity that produces the preliminary
design for the ship’s outfitting, including distributed systems, such as piping and electrical systems.

A.1.23 create preliminary structure design : The activity that produces the preliminary
steel structure design, including the arrangement of the primary structural members.

A.1.24 decide post-sales & maintenance support : The activity that puts together the
maintenance package for the ship. This is part of the tender document and includes the post sales
support.

A.1.25 decommission and disassemble : All activities relating to the last stage of the
ship’s lifecycle. It consists of the decommissioning and dismantling of the ship.

A.1.26 design schedule : Data that controls the time from the design phase to production.

A.1.27 distribution and outfitting design : The design of the distribution systems (electrical
and piping) and the outfitting.

A.1.28 estimate hydrodynamics and powering : The activity that approximates
hydrodynamic properties data calculations such as resistance, propulsion, seakeeping and
manoeuvrability for the preliminary hull form.

A.1.29 evaluate request & schedule bid : This describes the activities of the shipyard when
evaluating the inquiry of the ship owner for a new ship.

A.1.30 feedback : The outputs from activities which then feed back and modify previous ac-
tivities in the lifecycle on the current or subsequent ships.

A.1.31 finalise and approve general arrangements : The activity that details the general
arrangement after having created a draft layout. The ship’s systems are described by a compartment
and access drawing showing the location, the access, and the size of the different compartments.

A.1.32 finalise and approve hull form : The activity in which the hull form is finalised
from the preliminary design. The result is a final and approved hull form design.

A.1.33 finalise and approve hydrodynamics and powering : This includes all relevant
hydrodynamic calculations such as resistance, propulsion, seakeeping and manoeuvrability.

A.1.34 general arrangements : The space arrangement plan from the preliminary design
stage.

A.1.35 historical data from previous designs : Data held by the shipyard or model basin
on previous ship designs and used to estimate the hydrodynamics, powering requirements and sea-
keeping.

A.1.36 hull form sections : The design of the hull moulded form at planar sections taken
along the longitudinal axis of the ship.

A.1.37 hull moulded form : The definition of the shape of the hull of the ship, resulting from
the addition of the aft-body, mid-body and fore-body definitions, which does not take into account
the thickness of the material from which the hull is made.

70

A.1.38 hydrodynamics & powering results : The results of calculations and model basin
tests. They contain resistance, propulsion, propeller performance, brake power, service speed, sea
keeping and manoeuvrability data.

A.1.39 knowledge and experience : The previous experience and knowledge of companies
involved throughout the ship lifecycle.

A.1.40 laws, rules and regulations : National laws, statutory regulations and classification
society rules that are used to control the design, manufacture, operation, maintenance and scrapping
of the ship.

A.1.41 list of required certificates : The result of placing an order, this is the list supplied
by the owner for certificate requirements.

A.1.42 loading and stability manual : a booklet which is placed on board the ship for the
information of the master, which enables him or her to load the ship within prescribed limits, relat-
ing to strength and stability.

A.1.43 machinery design : The design drawings and electronic models of the ship mechanical
systems. An output from the final design process.

A.1.44 machinery weights : These outputs are the results of several calculation and design
activities which result in an estimated weight for all machinery.

A.1.45 manufacturing restrictions : A constraint on the ship construction and design proc-
esses governed by available technology and shipyard facilities.

A.1.46 material list : The list of raw materials needed to manufacture the ship. A result of the
final design process.

A.1.47 modifications from machinery : Modifications to the hydrodynamics and powering
due to feedback from the preliminary machinery design.

A.1.48 modifications to hull form : Modifications to the hull shape due to feedback from
hydrodynamics and powering results and the final design process.

A.1.49 modular units : sub-sections of the ship complete with machinery and outfitting which
will be assembled to create the final product.

A.1.50 offer : The result of the preliminary design process. It will contain the shipyard’s data for
producing the requested ship.

A.1.51 offer guidelines : The offer guidelines include the data necessary to make an uncondi-
tional offer to the ship owner

A.1.52 operate and maintain a ship : The activity that describes the running and mainte-
nance of the ship during its service lifetime.

A.1.53 operational information : Accumulated information during the operation phase of
the ship used for maintenance and in the final scrapping stage.

A.1.54 owner : The organisation which requests, orders, takes delivery of and, for the purposes
of this model, operates the ship.

A.1.55 owner request, requirements : The requirements document that is submitted to the
shipyard by the owner upon the invitation to tender.

71

A.1.56 perform ship lifecycle : All of the lifecycle activities associated with a ship.

A.1.57 place order : The owner places an order for a ship from the bids that have been
submitted. From this a contract is awarded.

A.1.58 planned maintenance system : Data created during the final design process and
used during the operation and maintenance of the ship.

A.1.59 pre layout : The very initial layout of the ship which is produced during the bid evaluation
stage and is the basis for the preliminary design.

A.1.60 preliminary design : The preliminary design is that which is completed in the phases
leading up to the submission of the tender.

A.1.61 preliminary general arrangements : The definition of the ship general arrange-
ments as a result of the preliminary design process.

A.1.62 preliminary hull form : The definition of the hull form, as a result of the preliminary
design process. Used in the offer documents and for preliminary compartment design, hydrody-
namics and powering calculations.

A.1.63 preliminary machinery design : The definition of the ship mechanical systems.
Used early to estimate the noise, speed and vibration and to estimate the machinery weights.

A.1.64 preliminary machinery, structure and outfitting design : Feedback consist-
ing of the preliminary designs for machinery, structure and outfitting and furnishing. This allows
the creation of preliminary general arrangements.

A.1.65 preliminary outfitting design : The definition of the ship’s outfitting and accom-
modation, resulting from the preliminary design process.

A.1.66 preliminary structure design : The definition of the preliminary ship structure
during the preliminary design process.

A.1.67 prepare bid : This activity includes all activities of the yard regarding preparation and
submission of the offer to the ship owner for the ship to be built.

A.1.68 present offer : The activity concerned with presentation of the offer to build the ship to
the prospective ship owner.

A.1.69 produce and approve reference documents : the technical documentation for
the ship is produced using production information. The output includes the loading and stability
manual which is approved by the Classification Society.

A.1.70 produce and inspect a ship : This activity includes high-level activities such as
produce, monitor and inspect ship production. Inspect, means the controlling of all activities
throughout the whole production life cycle of a ship.

A.1.71 produce modular build units : this activity covers the production of the modular
units which will make up the completed ship. They are produced from the steel-subsections and
their production is controlled by the schedule, contract, the approved design, and any manufacturing
restrictions. The results of the activity are the modular units which are assembled into the ship.

A.1.72 produce steel sub-sections : this activity covers the production of the steel sub-
sections which make up the structure of the completed ship. This is controlled by the schedule,
contract, the approved design, and any manufacturing restrictions.

72

A.1.73 product component information : The technical data about the components that
will be incorporated into the ship. These are taken into consideration when the preliminary designs
are being made.

A.1.74 production and delivery schedule : The schedule according to which the ship is
maufactured and delivered.

A.1.75 production information : information describing a product, e.g. dimensions, me-
chanical properties, workshop information.

A.1.76 propeller design : The design of the propeller or propulsor as a result of the hydrody-
namics and powering calculations. The design controls some of the machinery design activity.

A.1.77 quality assurance : the rules applied by an organisation within the shipyard that has
the task to audit the shipyard organisation and applied processes in a manner such that the quality of
the resulting product is assured.

A.1.78 request a ship : The first activities of a ship owner when intending to order a ship.
Having definite ideas regarding appearance and functionality of the ship, the owner expresses these
ideas in an inquiry to the shipyard.

A.1.79 request for production changes : Changes that are requested to the ship design as a
result of production experience or difficulties with the realisation of the ship design.

A.1.80 resistance and shaft power : The result of the activity to estimate hydrodynamics
and powering. Resistance and shaft power is a constraint on the creation of the preliminary hull
form.

A.1.81 resources : The shipyard, classification society, and outside consultants.

A.1.82 schedule : The schedule is formed as a part of the final design process. It governs the
timing of the production phases.

A.1.83 scrapping plan : The document used to schedule the time and resources required to
dismantle the ship.

A.1.84 ship : a large waterborne vessel whose design, manufacture and lifecycle operation is
governed by the principles of naval architecture and in accordance with international and classifica-
tion society regulations.

A.1.85 ship product model data : The product data of the accumulated throughout its life-
cycle. Because scrapping is part of the lifecycle the ship is not an output, only the documented in-
formation and knowledge about the ship survives.

A.1.86 ship weight modifications : Modifications to ship weight due to the preliminary
structure design. This is fed back to modify the preliminary hull form and revise the preliminary
general arrangements.

A.1.87 shipyard : An organisation that designs, builds, maintains, and repairs ships.

A.1.88 specify ship : All activities associated with the production of a detailed specification of
the ship prior to a contract being placed.

A.1.89 steel sub-sections : the sub-sections of the steel structure which are outfitted with the
machinery and distribution systems before assembly.

73

A.1.90 structural design : The design of the hull structure including hull, bulkheads, decks
and stiffeners.

A.1.91 technical documentation : In case of maintenance the technical documentation of a
system means part of the product description required to perform preventative maintenance, repair and
failure analysis of that system. Technical information is an output which includes more detail
information about material parts needed for producing the ship/system.

A.1.92 technical requirements : The owner’s specifications that must be realised by the
completed ship.

A.1.93 test results : maintenance test results are the results of functional tests carried out after
the execution of maintenance actions.

A.1.94 test ship : this activity tests the actual ship against the design, contract and rules and
regulations. The structure, is tested and sea trials are carried out. The test results are an output from
this activity.

A.1.95 test structures : the steel structures are tested against rules and regulations and the
design. The output is the test result documentation.

A.1.96 test systems : the ship’s systems including outfitting, machinery and mission systems
are tested against rules and regulations and the design. The output is the test result documentation.

A.1.97 transportation need : A constraint which determines the specification for the ship
construction.

A.1.98 weights and centres of gravity : Weights and centres of gravity necessary for further
calculations.

A.1.99 workload : The total effort required to build the chosen ship design as estimated by the
shipyard and assisting consultants.

74

Activity Node Tree

[A0] perform ship life cycle

[A1] specify ship

[A11] request a ship

[A12] prepare bid

[A121] evaluate request & schedule bid

[A122] create preliminary design

[A1221] create preliminary hull form

[A1222] create preliminary general arrangements

[A1223] estimate hydrodynamics and powering

[A1224] create preliminary structure design

[A1225] create preliminary machinery design

[A1226] create preliminary outfitting design

[A123] decide post-sales & maintenance support

[A124] calculate cost of ship

[A125] present offer

[A13] place order

[A2] complete and approve ship design

[A21] finalise and approve general arrangements

[A22] finalise and approve hull form

[A23] finalise and approve hydrodynamics and powering

[A24] complete and approve design of ship structure

[A25] complete and approve design of machinery

[A26] complete and approve design of outfitting and distribution sy

[A3] produce and inspect a ship

[A31] produce steel sub-sections

[A32] produce modular build units

[A33] assemble ship

[A34] test ship

[A341] test structures

[A342] test systems

[A343] conduct contractor sea trials

[A344] conduct acceptance trials

[A35] produce and approve reference documents

[A4] operate and maintain a ship

[A5] decommission and disassemble

19/10/97 The Building Block Cookbook 75

75

 USED AT: CONTEXT:

NODE: TITLE: NUMBER:

EDITOR:
PROJECT:

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:
REV:

WORKING

DRAFT

RECOMMENDED

PUBLICATION

READER DATE

P.

perform
ship life cycle

A0

laws,rules
and
regulations

transportation
need

manufacturing
restrictions

knowledge and experience

historical data from
previous designs

 resources
(shipyard,classification society,
 consultants)

feedback

ship product
model data

Top
2.0

1

x
STEP Shipbuilding Common AAM
John Kendall 22/05/96

A-0

19/10/97 The Building Block Cookbook 76

76

 USED AT: CONTEXT:

NODE: TITLE: NUMBER:

EDITOR:
PROJECT:

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:
REV:

WORKING

DRAFT

RECOMMENDED

PUBLICATION

READER DATE

P.

C2transportation
need

C1

laws,rules
and
regulations

C3

manufacturing
restrictions

I1

historical data from
previous designs

M1

 resources
(shipyard,classification society,
 consultants)

O1

ship product
model data

specify ship

A1
complete and

approve
ship

design
A2

 produce
and inspect

a ship

A3

 operate and
maintain a

ship

A4

decommission
and

disassemble
A5

product
component
information

scrapping
 plan

contract

preliminary
design

approved
design

planned
maintenance
system

certificates

technical
documentation

operational
information

ship

feedback

feedback

classification
society

shipyard/owner

shipyard and
classification
society

request for
production
changes

production
& delivery
schedule

feedback

ship product
model data

technical
documentation

2.0

2

x
STEP Shipbuilding Common AAM
John Kendall 22/05/96

perform ship life cycleA0

19/10/97 The Building Block Cookbook 77

77

 USED AT: CONTEXT:

NODE: TITLE: NUMBER:

EDITOR:
PROJECT:

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:
REV:

WORKING

DRAFT

RECOMMENDED

PUBLICATION

READER DATE

P.

C1transportation
need

I1

historical data from
previous designs

C2 laws,rules
and
regulations

C3

product
component
information

C4

manufacturing
restrictions

O2

preliminary
design

O1

contract

M1

 resources
(shipyard,classification society,
 consultants)

request
a ship

A11

prepare
bid

A12

place order

A13

owner request,
requirements

offer

shipyard

owner owner

list of required
certificates

technical
requirements

2.0

3

x
STEP Shipbuilding Common AAM
John Kendall 22/05/96

specify shipA1

19/10/97 The Building Block Cookbook 78

78

 USED AT: CONTEXT:

NODE: TITLE: NUMBER:

EDITOR:
PROJECT:

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:
REV:

WORKING

DRAFT

RECOMMENDED

PUBLICATION

READER DATE

P.

I1

historical data from
previous designs

C3

laws,rules
and

regulations

C2
product

component
informationC4

manufacturing
restrictions

C1

owner request,
requirements

O2
offer

O1

preliminary
design

M1

shipyard

 evaluate
request &

schedule bid

A121

create
preliminary

design

A122

 decide
post-sales &
maintenance

support
A123

 calculate
cost of

ship

A124

 present
offer

A125

budget

schedule

offer
guidelines

pre layout

preliminary
design

material
 list

availability
reliability and
maintainability
information

 workload

preliminary
design

costshipyard and
consultants

2.0

4

x
STEP Shipbuilding Common AAM
John Kendall 22/05/96

prepare bidA12

19/10/97 The Building Block Cookbook 79

79

 USED AT: CONTEXT:

NODE: TITLE: NUMBER:

EDITOR:
PROJECT:

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:
REV:

WORKING

DRAFT

RECOMMENDED

PUBLICATION

READER DATE

P.

C3manufacturing
restrictions C4

laws,rules
and
regulations

C5

product
component
information

I1

offer
guidelines

I2

pre layout

O1

preliminary
design

M1

shipyard

 create
preliminary
hull form

A1221

create
preliminary

general
arrangements

A1222
 estimate

hydrodynamics
and powering

A1223

 create
preliminary
structure
design

A1224
 create

preliminary
machinery

design
A1225

 create
preliminary

outfitting
design

A1226

historical
data from
previous designs

preliminary
hull form

basic hull
parameters

hydrodynamics and
powering results

propeller design

preliminary
machinery
design

resistance and
shaft power

modifications
from machinery

shipyard and
consultants

ship weight
modifications

feedback

preliminary
general
arrangements

C2owner request,
requirements

preliminary
machinery,
structure &
outfitting
design

weights and
centres of
gravity

preliminary
outfitting design

preliminary
structure design

2.0

5

x
STEP Shipbuilding Common AAM
John Kendall 22/05/96

create preliminary designA122

19/10/97 The Building Block Cookbook 80

80

 USED AT: CONTEXT:

NODE: TITLE: NUMBER:

EDITOR:
PROJECT:

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:
REV:

WORKING

DRAFT

RECOMMENDED

PUBLICATION

READER DATE

P.

C2

laws,rules
and
regulations

C4

product
component
informationC3

manufacturing
restrictions

I1

preliminary
design

C1contract

O3

production
& delivery
schedule

O4

approved
design

O1

planned
maintenance
system

I3

request for
production
changes

M1

 resources
(shipyard,classification society,
 consultants)

finalise and
approve
general

arrangements
A21 finalise and

approve hull
form

A22
finalise and

approve
hydrodynamics
and powering

A23

complete and

approve
design of ship

structureA24

complete and
approve
design of

machineryA25

 complete and
approve
design of

outfitting and
distribution

systemsA26

design
schedule

arrangements

hull moulded
form

hull form
sections

modification to
hull form

hydrodynamics
and powering
results

structural
design

machinery
design

distribution
& outfitting
design

O2

technical
documentation

2.0

6

x
STEP Shipbuilding Common AAM
John Kendall 22/05/96

complete and approve ship designA2

19/10/97 The Building Block Cookbook 81

81

 USED AT: CONTEXT:

NODE: TITLE: NUMBER:

EDITOR:
PROJECT:

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:
REV:

WORKING

DRAFT

RECOMMENDED

PUBLICATION

READER DATE

P.

produce steel
sub-sections

A31

assemble

ship

A33

 equipment
certificates

I1

approved
design

C4 manufacturing
restrictions

shipyard

production
information

production
information

C3contract

test ship

A34

ship

 produce
modular build

units

A32

produce and
approve

reference
documentsA35

 steel
sub-sections

 modular
units

Loading and
stability
 manual

quality
assurance

Classification
Society

C2 laws,rules
and

regulations

C1

production
& delivery
schedule

O1
certificates

O3

technical
documentation

O5

request for
production

changes

M1

shipyard and
classification

society

O2

ship product
model data

test results

2.0

7

x
STEP Shipbuilding Common AAM
John Kendall 22/05/96

produce and inspect a shipA3

19/10/97 The Building Block Cookbook 82

82

 USED AT: CONTEXT:

NODE: TITLE: NUMBER:

EDITOR:
PROJECT:

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE:
REV:

WORKING

DRAFT

RECOMMENDED

PUBLICATION

READER DATE

P.

I1

ship

C1

approved
design

C2

quality
assurance

O1

ship product
model data

O2

test results

test
structures

A341

conduct
contractor
sea trials

A343

conduct
acceptance

trials

A344

M1
shipyard and
classification
society

test
systems

A342

2.0

8

x
STEP Shipbuilding Common AAM
John Kendall 22/05/96

test shipA34

